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This report contains a collection of technical papers describing
research in adaptive control supported by AFOSR contracts F49620-83-C-0107
and FU9620-84-C-0054,

The basic objective of this research program is to establish the
theoretical foundations and performance limitations for adaptive control
applications to lurge space structures (LSS). An important element of the
research is to examine implementation concepts which can lead to appropriate
hardware development,

The program was originally formulated in late 1982 in response to the
increasing concern that performance robustness of Air Force LSS type systems
would be inadequate to meet mission objectives. In particular,
uncertainties in both disturbance spectra and system dynamics
characteristics (both time varying and stochastic uncertainty) usually
significantly limit the performance obtainable with fixed gain, fixed
architecture controls. The use of adaptive type controls, where
disturbances and/or plant models are identified prior to or during control,
gives systems designers more options for minimizing the risk in achieving
performance benchmarks.

The research was originally directed toward real-time adaptation of
the estimator form using variable order lattice filters to construct the
desired compensation. Early in the research, however, lack of a well-
developed robustness theory for adaptive mechanizations required a
reexamination of the problem at a more fundamental level, i.e., development
of model and disturbance uncertainty bounds for which adaptive algorithms
would exhibit (stable) desired performance., Toward this end there have been
two major accomplishments:

(1) Development of Theory: In examining the possible use of "rapid"

adaptive control it was necessary to generate new theory of use on large .
space structures. This theory accounts for the effect of unmodeled dynamics jf
with distributed parameter systems, such as flexible space structures, and

x
extends current adaptive theory in several directions, [ |
In the first place, current adaptive theory provides conditions for =
"global" stability, i.e., bounded-input, bounded-output stablility with no -
»
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limitation on the size (or spectrum) of the bounded-inputs (e.g.,
dlsturbances and references). Secondly, the theory {s limited to finfite- -=

dimenslonal linear systems. This latter condition cannot be satisfied by a

A s a

flexible space structure, which is a distributed parameter system. Also,

the disturbance and reference Inputs effecting the spacecraft have limited
magnitudes and spectrums and these limits are known, although not precisely. ,_‘
The theory we have developed circumvents those difficulties by providing -
conditions for "local" stability, i.e., limitations in input size and

spectrum are accounted. The theory also allows for a distributed system as

A & x A 5 s

well as providing quantifiable bounds on permissible model error. These
results extend the state-of-the-art In adaptive theory beyond the current
limits.

(2) Methodology Development: The use of "slow" adaptive control,

P SR

which is more practical than rapid adaptive control in most space
applications, necessitated a new methodology development merging key ldeas
in parameter estimation, system identification, and robust control design. T
By "slow" we mean that there is sufficient time to run batch identification
before the control system is modified. The methodology we have developed
resolves a long standing problem with adaptive systems of this type, namely,
the means to provide a guaranteed level of performance given an "identified"
model of the system together with the model error between the system and the "y
identified model. In fact, our methodology generates performance vs. model L
error tables (to be stored in the computer) from which the control design is -
immediately obtained. Moreover, the order of the control design is
determined strictly on the basis of model error and performance demand, ;"

rather than trial and error as has been suggested in the past.
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*
ISSUES IN THE ADAPTIVE CONTROL OF LARGE SPACE STRUCTURES
by

Robert L. Kosut and Michael G. Lyons
Integrated Systems, Inc.
Palo Alto, CA 94301

Abstract

This paper examines some basic theoretical and practical issues in
the adaptive control of large space structures (LSS). Particular attention
is pald to the practical issues of model error, decentralization, and
subsystem performance allocation. It is concluded that the currently
available theory of adaptive control, which is based on global stability,
centralized information, and perfect modeling, is not well suited for an
LSS. A direction for future research is suggested which is based on a
theory of local stability for the adaptive system.

®"Research supported by AFOSR under contract F49620-8u4-C-0054.




1. JINTRODUCTION

The high performance requirements of Large Space Structures (LSS)
together with potentially large uncertasinties in the system model, motivate
the use of an adaptive control system., Although a great variety of adaptive
control schemes exist for lumped parameter, small scale systems, e.g. [1],
these methodologies cannot be directly applied to the LSS because of the

following issues:

(1) Model error - The actual system is a distributed parameter system,
theoretically of infinite dimension, whereas the adaptive scheme
must be based on a reduced order model (ROM) of finite dimension.
This discrepancy introduces one kind of model error, the effect of
which is often referred to as ’‘spillover.’ Another class of model
errors are those attributable to uncertainty in parameters (e.g.,
mode shapes), neglected non-linearities, and other uncertain
unmodeled phenomenon (e.g., residual modes included).

(2) Decentralized control — In some cases the physical size and
complexity of the LSS makes it impractical to use a centralized
control structure due to considerations of actuator/sensor costs,
system reliability, and computational requirements, as well as the
step-wise deployment (and removal) of sub-sectioms.

(3) Performance allocation — Since the performence requirements are
stringent, it is necessary to allocat: performance in an efficient
mannexr so0 that sub-systems can help oxne another,

In this paper we explore the above issues from the point of view than an
LSS can be represented as a large-scale interconnmected system [2]. The
interconnection model used is composed of a number of uncertain subsystems
which are linked to other subsystems by an interconmection operator, which is
also uncertain. Uncertainty in the subsystems and interconnections is
expressed by using the notion of a conic model [3)-[4], i.e., representing a
complicated uncertain dynamic system as belonging to a set of systems
generated from simpler dynamic systems.

By using this representation the issues enumerated sbove can be brought
within a single framework which facilitates the analysis and synthesis of

adaptive controllers as discussed in [5)-[6].

DM iy |




E 2. BACKGROUND_DI1SCUSSION :i

The development of a design methodology for adaptive control of LSS el

involves many different issues. A comprehensive discussion of the theoretical f*
—
) and practical problems involved im both LSS control and adaptive control is .9

well beyond the scope of this paper. In this section we present a very

selective discuossion of the issues that seem most relevant. -

2.1 Adaptive Control 'i
Adaptive methods have achieved a great amount of success in producing ‘
stable, convergent adaptive controllers and adaptive observers for systems
whose structure is known and whose parameters are constant but poorly kmown or
slowly time-varying. Adaptive schemes may be direct, as shown in Fig. 1,
i.,e., the available control parameters are directly adjusted (adapted) to
improve the overall system performance or indirect, as shown in Fig. 2, i.e.,
the system parameters are identified (based on the assumed system structure)
l' and the control commands are generated from these parameter estimates as
though they were the actual values.
The use of such methods on distributed parameter or large scale systems,
like LSS, is greatly limited by the modeling problem—the adaptive scheme must :;?
_!J be based on a ROM (Reduced Order Model) of the actual system and, hence, the *
order of the model is, and must remain, substantially lower than the
controlled system [7]-[8].
The crux of the problem with adaptive control is to guarantee that the
s adaptive controller that is designed on the ROM will not, through a
: combination of spillover and model uncertainty, diverge and ultimately go
unstable. This problem is extremely difficult and has oanly recently been
addressed, even in the general context of adaptive system, e.g., [5],[6),[9].

2.2 LSS Modeling and Mode rrog

Traditionally, control design is based on models of the system which have
been validated thoroughly by extensive testing. Since the structural
integrity of LSS does not permit ground tests, the usval approach to modeling
is not fessidble for LSS. The primary difficulty is validating the model,
i.e., determining a goantifisble messure of model uncertainty., Ian this
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regard, the LSS has the interesting property of being an infinite dimensional
system, at least theoretically so, but practically of very high order. Thus,
the order of the design model and controller is not known a priori. In
consequence, adaptive controllers for LSS should be not only parameter
adaptive, but order adaptive as well., This leads naturally to the
consideration of order-recursive lattice adaptive conmtrol [10].

A very naturs]l means to determine model error (sometimes referred to as
plant uncertainty) is to perform an experiment which compares the model with
data from the actual system (or plant). If there is no error between the
model and the plant, then we have perfect knowledge of the plant. Normally,
the sitvation is the opposite--the error is nop-zero and represents how close
the model is to the plant. If we quantify this experiment, by defining a
specific measure of the error size, then this gives a sensible statement as to
model accuracy. For example, during experimental modeling using system
identification methods the model uncertainty is measured as the difference
between the messured output and the model output. Bounding this model error,
for all possible input/output pairs, results in a set characterization of
plant uncertainty. For example, a set description of an uncertain LTI plant
is to define a ball in the frequency domain. The center of the ball is the
nominal plant model, and the radius defines the model error. This set model
description is onme type of s more general set description, referred to as a

conic-sector [4). The uncertainty in the plant induces an uncertainty in the

input/output map of the closed-loop system which can sgain be characterized by
a conic sector. Performance requirements for the control system can be
translated into statements on the comic sector which bounds the closed-loop
systems, making it possible to check whether a given design meets
specifications, and providing guidelines for robust controller design, e.g..

[11].

2.3 ecentralized Control fo S ]
In the context of LSS control design, what we mean by a decentralized
control is the following: The control system is made up of a number of sub-

controllers (local controllers) which have limited authority over the LSS and

which use limited information abount the LSS. The limitations on comtrol

suthority and the information pattern are the main festures of the

decentralized control problem. The general structure of such a decentralized
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control system is illustrated inm Figure 3. The dashed lines indicate &
partial information exchange, e.g., the local controller receives reference
commands (or discretes) from a higher level control (the coordinstor) and/or
information from other local controllers in the form of an ‘aggregated’ state.

In a decentralized control we also need to determine the effect of
partial information on closed-loop performance., The two kinds of system
ignorance, i.e., model uncertainty and partisl information, can be viewed
under one framework by considering the controlled LSS as an jnterconpected
system, e.g., [2].

An interconnected system is a system which consists of several subsystems
interacting through various intercomnection operators. The key feature used
here is that knowledge about the subsystems and interconnection operators is

incomplete.
Techniques for decentralized synthesis more or less adhere to the

following steps (see, e.g., [12]).

Step 1: (Decomposition) Identify the individual subsystems and the
interconnection constraints between subsystems.

Step 2: (Local analysis) Design the local controller so that each
individual subsystem satisfies specified local requirements,

Step 3: (Global analysis) Verify tbat the intercommection 6f the
individual subsystems satisfies specified global requirements.

Step 4: (Robustness) Verify that the total system performance is robust
with respect to failures, disconnections, parameter changes,

etc.

In practice, these ’'steps’ overlap and iterations are required. However, the
first step, decomposition, is mnecessary to begin the design process.

There are several methods available for decomposition. These may dbe
broadly grouped into gemeric categories based on: time-scale separation,
frequency separation, and performance properties (e.g., observability,
controllability, quadratic cost, etc.). All 6f these can be vieved
graphically as well as tabularly, snd many pbysical systems, LSS incluoded,
possess all three types of decompositions (see, e.g., [13], Chapters I - III

fur complete exposition).
It is important to emphasize that many decomposition metbods are purely

mathematical and may decompose the system into simpler pumericsal problems
convenient for parallel or distriduted processing. In the LSS enviromment,

''''''
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decompositions normally result becsuse a natural separation is physically or
geographically present between functionsl components of the system, For ‘

example, consider the following task oriented decomposition:

(1) High avthority sctuators and sensors with low bandwidth for rigid
body control

(2) High avthority actuators with bandwidths to 20 Hz for slewing, with
possibly a series conmnected low avthority actuvator for final small .
-~ motion slew correction

(3) Medium suthority actuators and sensors for vibration isolation of
P disturbances

(4) Low authority actuators for isolation of critical structural
subsystems (mirrors, focal plame, etc.)

(5) Very low authority actustors/sensors for active damping or resomant
*. absorption, .

Some decompositions result from spatial differences: weak dymamic

= interaction effects can be easily identified. A decomposition also occurs

from temporal differences; phenomena occurring st different time-scales, eo.g.,
a separation between fast and slov modes or between low frequency and high
frequency effects. For example, groups of the modes can be separately
controlled by separate controllers which do not destabilize each other. ,E
Specific combinations of weak dymamic coupling and separation of slowv and fast
modes can often be identified, e.g., Figure 4.

In many cases, delegation of control authority is ‘politically’

o

practical. It is unrealistic to assume that the manufacturer of one device

will ever design another manufacturer'’s device, or even that both will

delegate complete authority to a systems house. The only commumication

bl PR O]

v
0
P

possidble in this case is to assess each manufacturer with specifications so

e
FES

that the operating devices do not compete. For example, simultsneouns on-orbit

sssembly of different parts of the LSS may be accomplished using temporary e
vibration control systems built by various manufacturers. This motivates a

design specification which includes tolerances that allow for some variety,

such that the overall differences do not impair on-going missions or

vy v 4" Ehadt)
T
T e

constructions in other parts of the LSS,
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Figure 4. Weak Dypamic Coupling with Slow and Fast Modes

Robust_ Interconnected Systems Approach

The input/output view of interconnected systems is completely compatible

with conic-sector model]l uncertainty descriptions. Representative theorems

(see, e.g., [2]) refer to interconnected systems of the form

n :
TR TED) TRY 2
4=l ' i=1, ..., m <

¥y = Giey ‘

are the subsystem operators, and “11' cees nnm sre the

where G., ..., G
i )

interconnections. The key features of the theorems are:

(1) If the subsystems and interconnections have quantifiable
input/output properties, e.g., conic—-sector bounds and/or passivity,
then the total system will exhibit performance properties directly
attributable to the subsystems and interconnections, e.g., conic-

sector bounds and/or passivity, )

(2) The total system properties cam be obtained by combinations of
subsystem and interconnection properties.

teo-oe
y ]

. T

This latter point is extremely important in the decentralized setting. This

means that one subsystem can 'help’ overcome the deficiencies of another
system, Furthermore, this also gives a clue to the guestion of allocating
subsystem performance in an efficient way so that a desired overall

pcrformance is achieved.
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3, ROBUST (NON: ADAF11VE) CONTROIL

Before attempting to develop a methodology for adaptive contrel of
uncertain (decentralized) systems, it is logical to consider the non-adaptive
case first, In fact, the adaptive design procedure should build on the robust
design procedure.

Historically, research in robust comtrol theory has proceeded from an
input/output view of systems, o.p., [3),[14]. Thbe more recent of these
results (4],(15) are variations on the Small Gain Theorem [3). The theorem
asserts that if the 'loop gain’ of a feedback system is less than unity, thenm
the closed-loop system is stable, However, to properly utilize the theorem it
is necessary to isolate the source of the model error. This is accomplished
by what is called a ’'loop-transformation.’

Many variations on loop-transformations are available {111, [15], and
small gain theory can be applied to analyze the robustness of criteria other
than stability, e.g., tracking response transients, Moreover, the technique
can also be used to assess the impact of various kinds of error sources. For

example, typical sources of model error in spacecraft systems include:

(1) npumerical errors due to approximate modeling techniques, e.g., high
order NASTRAN models.

(2) actual parameter changes in the LSS ,e.g., thermal effects, gravity,
spacecraft sand antenna dimensions, mass distributions, etc.

(3) unmodeled dynamics, e.g., effect of reduced order modeling,
neglected residual modes (’spillover’), neglected actuator/sensor
dynamics, non-linearities, etc.

(4) incomplete data obtained from on—earth testing, e.g., partially
assembled structures in simulated zero-g.

Therefore, uncertainty in the baseline model arises from both actual causes
and intentional approximations of complicated phenomena. In many cases, these
are indistinguishable,.

Negative results from the robustmess analysis may warrant redesign of the
controller, or even upgrading the reduced order design model if adequate

robustness cannot be achieved (e.g., [11])).

3.1 Applicstion to LSS
Consider s controlled spacecraft, as depicted in Figure 5, with the

following model:
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|
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55
Figure 5. Block Disgram of Controlled Spacecraft
<
Dynamic Model
y = M(s)on + 4, d = disturbance
Controller
u = C(s)(r-ys) , r = reference
Il where M(s) is s finite dimensional transfer function matrix model

representing the dynamics of the actuators and spacecraft and C(s) is the
transfer function matrix of the controller,

Let the actual dynamics be represented by
!1 y = P(s)u + 4

where P(s) is not necessarily finite dimensional. For example, P(s) can

R
oV Y

be either a high order NASTRAN model or represent dats from the actual system,

Byt

. "_:.L‘ALL_'," 5

whereas M(s) is the rednced order control design model. Thus, the

- controlled output is: -
' y=(1+P0) Y a+(1+P0)?PC (£-n) '

TE . H_=I-8
yd yr yd
(The complex variable 's’ has been suppressed for brevity of motationm,

unless needed for clarification.)
Suppose that M is a reduced order model of P. Let

P=M+ At
i' where At represents the effect of neglected residual modes. Thus, following
‘ {11), the closed-loop response is:
) o |
: = -1 -1 -1
fyd = Byd - (1-; MC) (1 + AtC(I + MC) ) ArC(l + MC)
R, = (1 + MC)
yd
. 13 .
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where ﬁyd is the nominal transfer function with no model error, i.c.,
At = 0,

Similarly, we can examine the way in which other kinds of model error
enter into the closed-loop dynamics. The spacecraft model, for example, may
not include actuvator dynamics. This omission can be represented by the model
error form,

P = M(] + A.)
where A. represents the deviation from the dynamics of an actuator with
infinite bandwidth. In this case, the closed-loop response is:

B, =8 - (1eM0) " Mi1+a (1400 eMy 4 c(xeme) ™!

yd yd
Applying the Small Gain Theorem [11). [15], tbe actpal spacecraft system is

stable if:
(1) The spacecraft model M is stabilized by C, i.e., the transfer
fonctions (I + MO, c(x+mo)™}, (1 +MOIM, and
(1 + c)"lcM are all stable.
and either:
(2) Reduoced order model errors are bounded by
Ha_ Gl ¢ 1/ Ve 2 Gall, w20
or
(3) Actuator model errors are bounded by
Ha Gerll < 1711ason encadll, o 20
where the norm |[.ll can be any matrix morm. Typically, the maximum
singular value o(.) is used. However, this may be unnecessarily
conservative; other measures are available, e.g., the Perron eigenvalue [4]).
The selection of the appropriate matrix norm will be examined.

In [7), there are several examples of these robustmess tests using the
ACOSS model, CSDL-I. Tsable 1 summarizes these robustmess tests for gemeric
model errors bounded in singular value by

olA(ju)]  8(w), w20
where &8(w) is determined from imput/output tests, e.g., RMS tests. Table 1
shows the stability margips, demoted by 6... defined as the maximum bdound on
model error, which (at the specified location, e.g., sctuator, semsor, etc.)
ensures stability., Thus,

8(w) <« G.n(w) R w20,

Note that the tests shown presume only one location for muncertainty,
Bounds on simultaneous errors at different locations are easily obtainmed [4],
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[7). Again, the upper singular value norm o(.) can be replaced by any other

matrix norm ||.11I.

Performance Robustpess

A similar procedure will be used to determine an upper bound on model
error to ensure a specified level of performance, i.e., performance

robustness. Let desired performance be defined by
o[(Byd - Hyd)(jw)] < p(w)c[Byd(jw)]

Thus, pl(w) specifies a bound on the relative deviation of Byd about the
nominal B For example, if the effect of reduced order modeling is bounded

by

yd*©

SlA_(jw)] < plo) [p(w)+11 /31Ty jw) ], v 2 0
then the desired performance robustmess is guaranteed.

Similar expressions can be obtained as s result of other sources of model
error, e.g., sensor model error, Table 1 summarizes these performance
robustness tests for gemeric model error. The table shows the performance
margins, denoted by Spm, defined as the maximum bound on model error (at the
specified locstion) which ensvres the specified performance tolerance. Thus,

6(w) £ Spm(w) , w0,

guarantees performance robustness, This slso guarantees stabdbility, since,

8 (w) <& (w), o220,
Pm sm

4. ADAPTIVE CONTROL

It is compelling to pass directly from the precedinmg notions about robust

control to the following indirect ’adaptive’ comtrol algorithm:

Jdentification

tep 1: Using input/output data estimates the free mode]l parameters,
thereby obtaining M.

Step 2: Using the same input/ovtput date it Step 1 obtain the upper
bound on tbhe residus] (unmodeled) dynamics.

16
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Design

Step 3: Using the model M from Step 1 aslong with the model error bound

in Step 2, determine a contro! compensator € such that
performance is bounded above by a desired level, If nco such
control € can be found, return to Step 1 and upgrade the model
fidelity.

Reconfiguration

Step 4: Reconfigure the existing control im accordance with Step 3.

Step 5: Return to Step 1 and repeat.

Although this process appears entirely ressonable, there are several open

questions., In particular:

(1) What is the best identification procedure for Step 1? For example,
what are the advantages of output error, ARMA models, lattice forms,

etc?

(2) How is the control design in Step 3 actually implemented in Step 47
If, for the example, the new controller is put in place instantly,
then there may very well be a tranmsient introduced such that system
performance, although stable, is unacceptable. If, on the other
hand, the new controller is gradually phased in, e.g.,

U= (l—a)uOLD + a uNEw

where a varies slowly from ‘O’ to '1’, then the question is: bhow
slowly?

(3) If in Step 3 no control is found to satisfy performance, then how is
the model fidelity upgraded? Should we add modes to the model? Or
perhaps the test for model error is too conservative. If so, then
how can we build s hierarchy of model error tests?

(4) 1In Step 3, what is the design procedure for selecting the feedback
given a nominal model M, a bound on model error, and a desired
performance level?

With the exception of (2), all the above issues pertain to rodbust (mon-
adaptive) design, This should not be surpri;ing, since one must assume the
existence of a tuned robust control, which could be attained by the adaptive
system. Thus, in order to prove the existence of a tunmed control, it must be

pcssible to design one.

17
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Applicatlon ‘

Graphs 1-5 show magnitude of model error vs, frequency us;ing varlous
models compared to the input-output data for the CSDL #2 structure. In all
the figures we have plotted the "optimal" stability margin determined on the
basis of an accurate knowledge of the first 18 modes (up to 2 Hz). 1In order
to achieve guaranteed performance levels near specification, it is necessary

that model error be significantly smaller than the optimal margin in the 2

Hz range.

Graph 1 shows model errors for an accurate 10 mode model (0.64 Hz) and
an accurate 18 mode model (1.77 Hz). To achieve performance it is necessary
to identify modes 11 to modes 18 (0.81 to 1.77 Hz) in order to reduce the 10
mode model error, Graph 2 shows a blow-up of the 2 Hz region of interest.

In Graphs 3 and U4, respectively, we show the result of two different
13 mode ID procedures. Both procedures use 2 mode models where the
parameter estimates are obtained from data which is filtered over narrow
frequency bands. The ID procedure in Graph 5 sweeps overlapping modal bands
11-14, 13-16, and 15-18. The models are then added together to form the 13-
mode model. Although the model error 1s very close to ideal (18-mode model)
below 1 Hz, there is considerable peaking near modes 17 and 18. The -~
procedure used to obtain Graph 4, however, shows a more uniformly small
error. In this case a 13-mode model is obtained by sweeping through narrow
non-overlapping frequency bands, i.e., modal bands 11-14, 12-15, 13416, and
14-18. Using this latter 13-mode model it is possible to obtain guaranteed
perfcrmance very close to optimal even though modes 14, 15, and 17 are not

completely known,

r 7,
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4.1 Rubustness of Adsptive Contzol

In summary, a fundamenta) issue in the design of an sdaptive controller
for an LSS is robustness to reduoced order modeling, parameter uncertainty, and
vnmodeled dynamics. Current theory, which provides conditions for stability
(or convergence) of adaptive systems, is limited to globel stadbility and
relies on the passivity of a particular subsystem operator (1), [5]. In this
regard, since the LSS has an inherent passivity with co-located
actuators/sensors, it is natural to exploit this for adaptive control, e.g.,
{16), [17). However, the presence of actvator dynamics easily violates the
passivity requirement.

For example, consider actuator error

P=M1+4),
2

A. unkpown but stable where M, the nominal model, is in model form, i.ec.,

2 2.1
M = sB'¢(s“I + 2520 + 0°) ¢'B

with 0 and 2z diagonal matrices of modal frequencies and modal dampings,
respectively, ¢ is an orthonormal matrix whose columns are the approximate
mode shapes; and B is the actuator influence matrix. Thus, M is passive,

in fact, M is positive real (PR), i.e., M is exponentially stable, and
pIMCGw) := 3 AM(jo) + M(-ju)'] 20, weR

where A(.) is the smallest eigenvalue. For scalar systems, plMGjw)] =
Re[M(jw)l. In [S) it is shown that P remains passive if M is passive, A.

is stable, and A. is bounded such that
;[A.(jw)] < g[M(jw)]/;[M(jw)]. weR

As discussed in [5), this bound is very conmservative and easily violated
by even the most benign actuator dynamics, e.g., a second order actuvator
model. On the otber hand, the SPR condition is a sufficient condition and not
necessary for stability of the adaptive system. Further, practical evidence

from actual applications supports the fact that SPR is not needed to provide

high performance adaptive systems, e.g., [18].
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The need for the SPR condition can be eliminated by considering local

stability rather than global stability [6). Local stability refers to

l stability where known restrictions exist for the system external inputs,
uncertain parameters, and unmodeled dynamics. For example, persistent
excitation induces exponential stability [18). Since an exponmentially stable
system is inherently robust, it is logical to expect that unmodeled dynamics

g? could be tolerated., In [6] several mechanisms—including persistent

» excitation— are examined which ensure stability of the adaptive system,
without SPR, provided certain other restrictions are enforced, e.g., slowly

varying signals, approximate SPR, and restricted signal magnitudes.

Application to LSS
Consider the LSS adaptive control system

y=d+Pu

where d is the disturbance; P is the mim transfer function matrix across
colocated actuators/sensors. Let each of the m control signals be given by

u, = -0

i iYi ° i=1, .... m

where z;i(t) is the adaptive gain at each colocated station, The objective
;! of the adaptive controller is to suppress the vibrations due to the
disturbance, while achieving a specified damping in certain critical modes.
e Note that the adaptive control structure is, in effect, decentralized. A
typical parameter update law [1] is,
ho 0, = 5,04,,8,>0 I
i=1, ..., m

L e, = '1"”1 ‘

Local stability conditions exist (see [6] for details) if the system §:
(v,,0,) I--> (e .¢,,5,,7,), shown in Fig. 6, is stable where

L = diasg (;1 ’ eees ?E)
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M = y.Hly; 4 e.ﬂzy:

w(1 + pc,) P

1

(1 + Pc,)”

W = diasg (wl, oo 'm)

)
"

ai L J ¢
o 2g (O » ..., O))

s Ye = Bzd. e, = Wy,

. )
The constants O1 s eses O. sare the tuned adaptive gains; y, and €, are

the responses of the corresponding tuned system. Global stability is

guaranteed if e, and Yo approach zero asymptotically, Bl and Bz are

j‘ exponentially stable, and Bl is SPR. The SPR condition on Bl is not

needed for local stability. It turns out that S is exponentially stable if

Yo 1s persistently exciting and e, is sufficiently small (6].

Figure 6. Feedback System S

5. CONCLUDING REMARKS

In this paper we have briefly discussed some of the practical issues
involved in the adaptive comtrol of an LSS, e.g., decentralization, model
error, and performance allocation, The conclusion is that existing adaptive
theory needs to be radically revised if useful engineering tools are to

emerge. A particular direction for further zresearch, as advocated here, is

the further development of a theory of local stability for adaptive systems
[6]. We have shown that such a theory is compatible with conic-model
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representations [4) and interconnected system theory [2), thus, providing the

basis for resolving the issues enumerated sbove.
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An Input—Output View of Robustness in Adaptive
Control*

) R. L. Kosutt and C. R. JOHNSON, Jr}

An input-output theory of adaptive control provides a means of determining the
robustness properties of adaptive algorithms.

Key Words —Adaptive control; robustness; robust control; stability; model reference adaptive control.
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Abstract—The stability and robustness properties of adaptive
control systems are examined using input—output stability
theory, i.e. passivity and small-gain theory. A generic adaptive
error system is developed based on the concept of a tuned
system—an ideal converged (nonadaptive) closed-loop system.
Using this error system with passivity theory gives conditions for
global stability where only boundedness (in norm) is required on
the external inputs, e.g disturbance, reference and initial
conditions. Small gain theory is used to develop local stability
results where the magnitudes of the external inputs are restricted.
In the global case, a particular system operator (not the plant) is
required to be strictly-passive, a condition which is unlikely to
hold in actual use due to unmodeled dynamics. The local results,
however, are not so restricted and allow for unmodeled
dynamics. In this latter case an estimate of the stability margin is
given under a persistent excitation condition.

1. INTRODUCTION
AT A VERY basic level. the issues involved in adaptive
control design are no different from nonadaptive
(robust) control design. In either case the goal is to
maintain specified performance properties despite
uncertainty about the dynamics of the plant to be
controlled. as well as uncertainty about its
environment. In the nonadaptive case the problem
of robustness to unmodeled dynamics is well
formulated (e.g. Doyle and Stein, 1981; Zames and
Francis. 1983). However, research in adaptive
control theory has focused almost exclusively on the
case where the plant can be fully represented by
some member of a family of linear finite-
dimensional parametric models (e.g. Narendra, Lin
and Valavani, 1980: Goodwin, Ramadge and
Caines. 1980). Thus. the model error due to
unmodeled dynamics is presumed to be zero.

* Received 6 November 1983: revised 4 April 1984. The
original version of this paper was not presented at any IFAC
meeting. This paper was recommended for publication in revised
form by guest editor L. Ljung.

+ Integrated Systems. Inc.. 151 University Avenue. Palo Alto.
CA 94301, USA.

3 School of Electrical Engineering. Cornell University. Ithaca.
NY 14x53 U S A

§ A good source book on this material is the text by Desoer and
Vidyasagar (1975). The notation used there is also used
throughout this paper
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Unfortunately, unmodeled dynamics can cause
adaptive controllers to exhibit significant perfor-
mance degradation and instability, even with an
initial controller parameterization that closely
approximates the desired closed-loop response
(Rohrs and co-workers, 1981, 1982; loannou and
Kokotovic, 1983a,b). These simulated circumstances
of undesirable behavior are in sharp contrast with
successful applications of adaptive control where
reduced-order modelingis unavoidable (e.g. Astrom.,
1983). Thisissue of model error, then, is of undeniable
practicalimportance, because no actual plantis truly
linear and finite-dimensional.

Perhaps the main reason for the lack of a
robust/adaptive control theory is that the emphasis
has been on global results. What we mean by ‘global’
is that the intent is to require as little a priori
information about the plant parametrization and
the external inputs as possible to prove stable
behavior. Because of this. the resulting requirements
(i.e. assumptions) are too strong, e.g. known plant
order. Therefore, it is compelling to abandon the
requirement of global stability—a requirement that
may well be beyond the needs of most actual
systems—and develop conditions for local stability.
The term ‘local’ is used in the sense that the plant
uncertainty and external inputs are limited in a
defined way, e.g. by restricting the magnitude and
spectrum of the reference commands and disturb-
ances, as well as the initial adaptive parameter error.

In this paper we will present an input-output
view§ of robustness in adaptive control. In
particular, we shall draw attention to uncertain
unmodeled plant dynamics—often referred to as
model error—and to uncertain. but bounded.
disturbances. Based on this view it may be possible
to merge robust control theory with adaptive
control theory.

The next section (Section 2} formalizes the
conversion of a generic adaptive controller to an
equivalent generic error system. The input output
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properties of the error system relate the perform-
ance of the nominal control system to that of the
adaptive control system. Section 3 applies this
formulation for a specific continuous-time adaptive
model-following algorithm. This permits the appli-
cation in Section 4 of stability results for the
continuous-time version of the generic error system.
This section also includes a discussion of the strictly
positive real (SPR) condition imposed on an
operator within this error system. Finally, in Section
S, we will examine the issues involved in obtaining
conditions for local stability and robustness.
Though this paper concentrates on continuous-time
systems (due to space limitations), this same
input ~output approach is applicable to robustness
analaysis of discrete-time adaptive control (e.g.
Kosut, Johnson and Anderson, 1983; Ortega and
Landau, 1983) as well as time-varying systems
{Gomart and Caines, 1984).

2. ERROR SYSTEM FORMULATION
(A) Tuned control concept

Consider the nonadaptive control system of Fig.
1, described by

e=H,.(m)w ()

where e(f)e R™ is the error output, w(t)e R™ is the
external input, and ne R™ is a set of controller
parameters to be selected. For our purposes, H,,.(*)
represents a closed-loop parametric feedback system
dependent on the adjustable parameters in 7. The
output e of H,,(-) is the error the control system
experiences in meetingits objective given theexternal
input w. Portions of H,..() are not entirely known,
e.g. the open-loop plant imbedded in H,(-). The
input w(r} is also not entirely known but can be
assumed to be in a subset Wof bounded signals. For
example. w(r) can consist of a set of reference
commands and bounded disturbances. If the
imbedded controller were adaptive. it would adjust n
continuously on-line soasto reduce theerror; but for
now assume that n is constant and will be selected off-
line.

If the control designer had all the ‘off-line’ time in
the world to ‘fiddle’ with the parameters n. then it is
hoped that a satisfactory adjustment would be
obtained. Many strategies car be envisioned for
determining a satisfactory =m. In fact, such a
satisfactory parameterization may not be unique

wit)——| H, (o) f——e elt)

Fis. 1. Nonadaptive system.
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but, rather, be any member of a set S, e.g.
S = {reR"™|H,,(n) has desired properties} 2)

Certain parameter sets S correspond to well-
defined design strategies. Specifically:

Matched. Let § denote the matched ‘parameter
set, i.e.

S = {feR™H..(7) =0]. (3)

Robust. Let S° denote the robust parameter set,
ie.

S° = {n°€ R™||H ..(n®) w l/Ilwl < p°, Vw(-)e W]
(4a)

where the norm ||| is defined on the underlying
function space. The finite constant p° represents the
robust performance specification. Note that S°
includes the ‘optimal’ robust solution, ie. those
ne R™ that solve

infsup (IH ew(m)wll/lIw). (4b)

Tuned. Let §%,, denote the tuned parameter set
associated with a particular w(-)e W, ie.

8% = {n¥ e R™| ‘Heww:-(.))w"/" < p*}. (5a)

The finite constant p* represents a tuned perfor-
mance specification. In order for (4) and (5a) to be
meaningful, it is necessary that

p*<p’ (5b)

i.e. the desired tuned performance is better than the
desired robust performance. Also, $2,., will include
the ‘optimal’ tuned solution. i.e. for each w e W.those
ne€ R™ that solve

inf (|1H . (Wil W), (5¢)

Ideally, the adaptive control should converge to the
optimal parametrization of (5c¢). Thus, the tuned
parameter set, denoted by S*, is given by

S = |J S, (6)
wi-de W

Note that each element of S* is satisfactory for a
particular w(:)e W and that no one element in the
subset S%,, c S* need provide satisfactory control
for a different w(). (Although =¥ , € S* emphatically
denotes the dependence of the tuned parameters on
w(). we will henceforth denote membership in S* by
the simpler notation n*eS*. where the w(‘)

dependence is to be implied.)
The error signal corresponding to the matched
case is identically zero. It is this particular case that
has received practically all the attention in adaptive
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contrel researchs and about which the strongest
thearenicat tesults e avadable Uintortumatels . in
the fust place. this case eacludes unmeasutable
bounded disturbances which are a virtual certainty
moany actual systems By unmcasurable bounded
disturbances we mean those distun bances which can
not be totally repected at the output of the plant. In
the second phace. there will alwiass be unmuodeled
dynamies, e there ane never enough parameters in
noto sohve Ho iz 0an pracuee. These remiarks
apply cqually im0 stochastic environment. For
cnuimple. whereas i the deterministic case ¢ = 0. in
the stochastic case Liet - 00 waith E ) the
expectation  operator. Thus, the  unmeasurable
bounded disturbances alluded to above have thar
stochustic counterpart as processes which do not
have zero mean. e, Ejey # O for any o,

The more appealing of the other two sets is the
tuned set $*. defined in (6). The associated error
stgnal

¢t = H, %) (7

is referred to as the nned error and H(n*) as the
tuned sysiem. Although ¢*(t) = 0 is ruled out due to
the impracticality of =* € 8. we do not preclude the
case where ¢*(7) — 0. This latter case stll presumes a
degree of idealization. Consider the case where the
external input w consists of a stcp reference
command with no disturbance and e* is the
difference between the plant output and the
reference command. Thus, e*(t) — 0 is the ideal
output error for any stabilizing controller engender-
ing umt d.c. gain. This class of tuned controllers can
be quite large even if dim (n*) < dim (). Now
consider the impact of a bounded disturbance,
which is not necessarily of any particular functional
form. such as a broadband bounded signal. Clearly,
with such bounded disturbances present. e*(1) = 0,
and can only be assumed to be bounded.

An important comparison for the tuned set S* is
10 the robust set S” (4). Let

e =H, . .=2"w (8)

denote the robust error. Recall from (S) and (6) that
the tuned paramcters n* arc dependent on a
particular w(-)e W, whereas the robust parameters
1" arc not. Hence, the tuned error can never exceed
the robust error. e, for a particular w(-)e W,

el = 1wl < Bell = IH ("l (9)

Condition (9)also follows from the fact that p* < p°
(Sh). Note that it is possible for the robust set §° to
be empty even though the tuned set $* is not. 118" is
not empty. then consideration of an adaptive
controller in justified if for some ‘large” subset of
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wie B vanous tuned controlices exist such that
cach engenders

fle*l < def. (o)

I tus were not the case, then a robust controfles
would suthee This regquirement (10) is weaker than
the requuement p* « p's which may not be
attamable lor all were 3 simee (10 s required only
mver a o subset of B However, even af (10) holds,
adaptation may cause the error duning adaptation
to become either eacessine or 10 otherwise eaceed
spectications,

The usefulness of detiming the tuned parameter set
will be borne out in the neat subsection. The tuned
setis used there to develop a genenic adaptine error
system. At this point, however, we rema “hatatas
not necessiry to solve the optimization problem
defined implicitly in (S) rather we only need to
know that a solution exists which is better than the
robust solution (4).

(B) Adaptive error system

Now consider the adaptive version of (1)
depicted in Fig. 2, and described by the
input- output rclations

ol H..(#) = Hii)w e
: = He (7) w=H(ijw (t1a)
#t = Q[AR(O0). e. &) (11b)

wherc 7i(1)€ R"~ are the adaptation parameters which
are gencrated from the parameter adaptive algorithm
Q, and 7(0)e R is the initial parameter estimate.
The adaptive algorithm is driven by the output or
adaptationerror ¢{t)€ R" and theregressor (1) € R™.
The regressor is obtained from sensed signals within
the feedback system.

We want to ultimately determine conditions
under which the adaptive system (11) is stably
attracted to the set of tuned systems (6). Recall that
the tuned system set is likely to contain more than a
single member, thus by stabili.y we mean stability
‘about’ a (possibly disconnected) set rather than
about a point.
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Phe analysis s faabitated by tansformamg the
format of g 2anto an crror system totmat. 1o do
this we must detine the sttuctuie o the adapnee
control - Consider a0 smgleanput single-output
(SISOY plast ambedded m Hey o whose input u(r)
i piven by the bhilincar expression

e SR (12)

Note that this development is not limited to SISO
plants. The extenston of (12) 10 the multivariable
case imohes a similar expression for cach control
channel. e

uity = =S fn. i= o, H, (13)
where &) and £1) are vectors consisting of
clements from the regressor and parameter vectors,
respectively. However. only the SISO case will be
considered here 10 reduce the complexity of the
development and allow sharper focus on the
adaptive systems issues. Normally, E(1) consists of
the plant inputs and outputs, or filtered versions
thercof. For example. in discrete-time systems S(7)
consists of a finite record of past plant inputs and
outputs.

Although the bilincar structure in (12) and (13)
remains the most widely used and studied format,
nonctheless. other structures (as yet underdevel-
oped) may be more suitable to certain problems
c.g. distributed and or nonlinear structures.

We will now muke a strong assumption regarding
the way in which wr) and w(f) are transmitted
through H(.) into ¢tr) and i(1).

Assumption. The map (w, u)}— (e. &) is linear time-

invariant (LTI). ie.
(:(H _ G."“h' q,.u(s) wi(r) - G(s) w(r)
NI} Gan(s) G ls) | utr) u(r)
(14)

where G(y) is the open-loop interconnection matrix
whose clements are proper rational functions. (To
simplify notation we will use s to denote either the
Laplace transform vanable or the differential
operator, depending on the context.)

The adaptive system (11) with bilincar control
(13yand LTI interconnections (14) is shown in Fig.
3 To transform this system 10 an error system,
define the parameter error

f()= R ~n* (15a)

with

n*e N*

28

elt)

w(t) ———e

ult) G(s)

e’

B, 3 Adaptine ssstem with LTHmerconnection

and the adaptive control error
ru) = Sy, (16)

Thus, Fig. 3 can be redrawn as shown in Fig. 4 and
described by

¢:(l) = =G . 0, +(;(.\)[ “(”]. (17a)
<(r) S()n* —r(r)

ey | H: (s} HY(s) wi(t)
anf LHas) His) L -e@)
_ e w(t) .

H (.sil:_r(” (18a)

where

H2.(5) = Gouls) + Go(s)In* U + Guls)n*') ' Gy (s)

(18b)
HE(5) = Go() + Go(sIn* (] + Gou(s)*') ™ ' Guls)

(18¢c)
H2.(s) = (I + Ge(s)n*') "' Guls) (18d)
HA(s) = (I + Gg(s)n*') ' Guls). (18e)

The dashed box in Fig. 4 is H*(s). We will refer to
H(s) as the tuned interconnections. Note that the
tuned error (7) is identical to

e*(t) = HE.(s) w(t). 19)
We also make use of the tuned regressor, defined as

§* (1) = HALs) w(r). (20)

Finally, the error system (Fig. 4) can be depicted as
in Fig. 5, where

(2ta)
(21b)

e(r) = e*(1) — HA(s) v(1)
()= §*(1y — HA ) v(n)

v(r) = S(YR(1) 2l¢)
(21d)

fi(r) = Q[R(0), ¢(-). £()).
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Figure S reveals that this error system 1s composed
of a nonlincar system in the forward loop, denoted
by A, .. and the LTI system HX.(s) in the feedback
path. Thus, the error system is driven externally by
the tuned system outputs ¢*(1) and *(1). and the
initial parameter error 7(0) = #(0) — n*.

{C) Existence of the tuned controller

The designation of the tuned controller is the
concept most important to extracting a meaningful
error system from the description of an adaptively
controlled system. It might appear that the ability to
specify this tuned controller presupposes our
knowledge of an acceptable solution to the
underlying adaptive control problem. This is not
entirely the case. Given the parametric controller
structure of C(-). we need only have an approximate
a priori knowledge of the system behavior. Given a
particular n*, we will discover that the restrictions
on HY and H} can be assesscd from knowledge of
the tuncd controller and bounds on the magnitude
of the plant modeling error. Such information is a
practical result of a thorough plant modeling study.
Thus, the study of the stability of (21) will have

Nv'

€' (0

practical  meaningfulness. We  will examine a
particular continuous-time adaptine controller in
the following section and derive the form of H%, and
H?

~te

3 CONTINUOQUS.TIME ADAPTIVE MODEL-
FOLLOWING

To characterize HY. and H? some designation of
a tuned controller must be provided. We make the
choice by assuming that no modeling error exists in
the nominal plant parametric model. We close with
consideration of the degree of plant mismodeling
aliowed such that this tuned controller is robust, i.e.
maintains stable control of the actual system.
Following this discussion. in Section 4 we consider
the effect of the adaptive algorithm.

(A) Direct model reference adaptive control
Consider the model reference adaptive control
(MRAC) system shown in Fig. 6, described by

y(1) = du) + P(s)u(r) (plant) (22a)
¥(t) = Hisyr(t) (reference model)  (22b)
e(r)y = y(1) — ¥(1) (tracking error) (22¢)
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(b)

F1G. 6 Model reference adaptive system (a) block diagram. (b) controller detail.

where d(t) consists of disturbances and plant initial
conditions, and r(¢) is the reference command. Let
{C().Q} denote the adaptive controller, where Q
is the parameter adaptive algorithm and C(‘) is the
parametric controller. Following Narendra, Lin,
and Valavani (1980). let C(-) have the bilinear form

]

=&y #fr)
= —éu(”lﬁu“, - ‘:)(',lﬁu(’) - ér(')‘ﬁr(') (233)

u(r)

where the regressor is given by filtered versions of u,
yandr

Sty = [Eu(r), &,(0), § ()]
= [F(shu(t). F(s)y(t), — F(s)r()] (23b)

with

1 ¢
F(?) = ‘m. ey m’
(23¢c)

and
Ls)=s +a,8¢ "+ ...+ a. (23d)

Thus, there arc 3k adaptive parameters. Using the
definition of adaptive control error in (2i¢), the
MRAC control signal (22) can be expressed as

A1)

_Are A2(%)
L(s)

_AN) L AY)
L{s)

W) + —==r(t) = v(1)

u(r) Lis)
(24)

ult) =

where the tuned parametrization n*(=#£-—7) is
distributed among the control elements as follows:

Afs)=n¥st"' 4+ 4+ (25a)
AS(S)=m¥, " + L+ wl, (25b)
A;(S) = ﬂ;k+|sk-l + ...+ 1!3,‘. (25C)

Thus, (24) becomes

u(t) = C3(s) r(t) — C(s) y(t) — Ci(s)e(r)  (26a)

where

A3
Co9) = Ty + Ater
A%(s)
*( Yoo 37
Ch(s) LG + ATGY
Cals) = —L2) (26b)

L(s) + A%(s)

We will refer to C* = [C},, Ct,. C3,] as the tuned
controller. The adaptive error system (21) cor-
responding to the MRAC of Fig. 6 isshown in Fig. 5.
The tuned signals (3.19) and (3.20) are

e* = [(1 4+ PCS) 'PCL—RA)r— (1 + PCY) 'd
(27a)
(1 + PC3) 'C&F'r = C8(1 + PC2) 'Fd
& =|(1 4 PCY) 'PCLFr— (1 + PCY) 'Fd
-Fr
(27b)
30
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I he tuned mstctconnections (I8 ae

75 | B L S T L G (2Xa)
L rezy e

LU POy P (28b)
{)

(B) Tuned svstem control design

There are any number of ways 1o design the tuned
controller €*. The important point - no maltier
what design method is used s that the tuned
design must be robust, because the plant Pisyin (27)
and (28) 1s not entirely known. Recall from (5) that
the tuned controller 1s dependent on the plant. For
example, the 3A parameters in n* cannot make
r]— e in (27a) beadentically zero. This can be viewed
as a reduced order design problem or, as in the
discussion that follows, a problem in robustness to
unmodeled dynamies.

Supposce that the actual plant can be described by

Pis)y = [1 + A)]P*(s) (29a)
an‘L\’
*(0) = U
Prs) A*(s)
bots™ + bs™ ' + ...+ b,)
= . — .m<n
ST+ a8 +...+a,
(29b)

wherc P*(s) is a tuned parametric model of P(s), i.e.
the parameters (h,,..... h.a..... a,) provide a good
fit, say at low frequencies. The transfer function A(s)
represents unmodeled dynamics, i.e. those dynamics
in P(s) not accounted for by P*(s), e.g. high
frequency efforts. Assume that A(s) is stable but is
otherwise unknown except for a bound, i.e.

Aol < d(w). YVweR. (29c¢)

This type of modeling uncertainty is said 10 be
unstructured (Doyle and Stein, 1981). In more
gencral terms, (29) provides a set description of the
plant rather than a single parametric model, such as
P* (Safonov, 1980).

We will now examine the impact of model error
on a tuned control design based only on the
parametric model. The model reference format
suggests that we make ¢* as small as possible. To
eliminate the tracking error term in (29a) entirely,
we will use the procedure described in Egardt
(1979), which requires that the following infor-
mation is known:

(1} n > m (P*(s) is strictly proper)

(2) n and m are known

(3) B*(s) has all zeros strictly inside the left half
plane.

Ao, the relerence model tanser tunction s
assumed to be

By by by Uy by,

Hs) - .
) AN TS Y4 .4 a

(30)

"

whete by by a,. ... a,, are preselected constants,
and where His) s exponentially stable e, all zeros
of Ay are strictly mside the left half plance. hois well
to point out here that although assumption (2)
above can be satisficd by the parametric model
{29b). this 1s not the case for the actual plant (29a)
due to the presence of the unstructured uncertainty
(29¢).

The tuned controller  structure  proposed in
Egardt (1979) requires that

. R*

= b B*S* (3ta)
. BT*

. = b B*S* (31b)

where T* is a stable monic polynomial of degrec
ny > n — m — 1, and where the polynomials $* and
R* uniquely solve the polynomial equation

T*4 = R* + AS* (3lc)

with $* monic of degree n;. and R* of degreen — 1.
With no model error (A = 0. this controller (31).in
addition to stabilizing the tuned system. also makes
the transfer function from r into y* identical to the
reference model H(s). Thus, the tuning of (31) is for
the subset of W composed of bounded reference
signals and zero disturbance. Theeffect of (31)on C3,
will shortly be made apparent. Comparing (33) with
(26) motivates solving for n* from

L + A% = B*S*
|
s = g 32
A b‘,R (32)
1 .
- BT,
A% hoB

A solution for n* exists provided that
k=n+mzn (33)

With this choice for (A}, A%, A%). the tuned
controller is given by (31) and by
L
bR 34

o, BS* (34)
(C) The effect of model error on tuned system
performance

It is convenient to define the transfer function

G* = R*

= Kk
rod (35)
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Using the tuned controller just desciibed. the tuned
sipiitds (270 e then

A%N
e* (b4 AGH '|.\(l - G 1T JJ (36)

- Fd

u oy ! 1"n - A*R* . -
o holt* 1 hoB*T* 1

¥

B AR b
(1 + AG*) 'IH 4 A).-I For - 7% 4 l-"(l]
-I'r
(36b)

and the tuned mterconnections {28) become

hyL
H* = (1 + AG*) '(1 4 A)-Ti,’-.3 (37a)

s LAY
; 11+ A(l*) ‘B*T-‘TZF -]
|

= o byl _ [.(37b)
Ll + AG*) (1 + A)=2 F
| )N Vyas F
L 0

The tuned system with no model error (A = 0) is
exponentially stable, since, by assumption. the poles
of (B*)™'.(4) '.and (T*) ' arein the open left half
plane. Hence ¢* and &* are bounded if r and d are
bounded. Thus, the stability of the actual tuned
system is guaranteed if and only if

(1 +AG*)"" and (1 + AG*)™' A
are exponentially stable. (38)

Note that under these conditions, the tuned
interconnections in (37b) remain exponentially
stable. However, it is not necessary (nor possible by
assumption) to have a complete description of A in
order to satisfy (38). For example. if A is known to be
exponentially stable, then with G* known to be

:_ . exponentially stable, (38) holds if (e.g. Doyle and
Stein, 1981)

‘o : .

- IAGoNIG*Gm)| < 1, Ve R. (39)

Satislaction of (39) requires that

T " ¥ ¥ v w &
' e
st

[AGenl < d(w) = 1/|G*Qm). Yooe R, (40)

We will show in Section 4 that 6(m) < 1 is the limit

. imposed on é(») by the usual global stability results
for continuous-time adaptive systems. Similar limits
' arc also encountered with discrete-time adaptive

systems.

3 GLOBAL STARINITY CONDITIONS

The putpose of this section s to mtroduce global
stability conditions applicable 1o the genenic error
systenof (21 In the preceding section, we specified
anadaptive controller structure CG) from which we
then developed the tuned system (rod)|— (%.5%)
and the imterconnection operators HY, and HS . We
now need 1o charactenize the adaptive law € in
(21d). With this connection we will be able to
interpret some conditions under which such a
continuous-time adaptive controller possesses a
(limited) degree of robustness. OQur anterpretive
remarks will address the restrictiveness of the SPR
condition on H2, that arises in practically all global
stability theorems.

(A) The adaprive algorithm

We will begin by specilying the adaptive law (s 1 of
interest. A large class of adaptive algonthms (21d)
have the from

F)y = A[EC). w)). #OIeRT 41a)
oty = <) e(r). 41b)

We will refer to A(...)as the adaptation gain. which is
a nonlinear operator. In general A[-.-] can have
memory, usually only in &@). The adaptive
algorithm can also be expressed in terms of the
parameter error ©(1) as

7 (1) = ALZ0C) o()]. 7(0) = £(O0) — n*.  (42)

The complete adaptive error system (21), including
the adaptive algorithm (42), is shown in Fig. 7.
The choice of algorithms, ie. the variety of
proposed adaptation gains, is virtually unlimited.
The following two are our chosen representatives:

Constant gain (Narendra, Lin, and Valavani, 1980).

A[EC) o(t)] = Agm(t)

. . 43)
“here A(.E R,' ".Ao = A() > 0

Retarded gain (Kreisselmeier and Narendra, 1982).

A [¢()1 (',(’)]
_{Auw(l), (1) < ¢

T Aoot) = (1 = F@)/e) a0 170l 2 ¢
(44)

where A,e RT°P, Ay = A, > 0, and ¢ > max |n*|.

We will use the concept of persistent excitation
that has proven important in adaptive control, as
well as in adaptive system identification.

Definition  (Anderson,  1977). A function
f(). R, = R" is persistently exciting, denoted by
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1€ PEOf there exists positive constants x;. x, and x,
such that

DY N

2,1, = ) fuyde = 2,1, ¥se R.. (45)

Y

We will discuss the implications of persistent
excitation on global stability below, as well as in
Section §, in regard to local stability.

(B) A glohal stability theorem
Theorem 1. which follows, gives conditions for
global stability of the adaptive error system of Fig. 7.
The term “global’ refers to the intention of seeking
the minimal (reasonable) restrictions on the tuned
signals ¢*(r) and &*(¢), and the tuned interconnec-
tions HY (s) and H* (s) resulting in the proof that e
and  remain bounded. i.e. (21 )is stable. for any finite
7(0). (A detailed proofof Theorem | is givenin K osut
and Friedlander (1983).) In particular, we will
consider the following two tuned system signal sets as
‘inputs’ to the error system:
8 = e E AO)e* é*el,n L,
el . 7(0)e RP} (46)
W = le*, > A(0)e*el, . (*ell,
#(0)eR"}. (47)

"
=
.

Note that e*, ¢*elL, L, essentially implies
boundedness and ultimate decay to zero, whereas
inclusion in L, only implics boundedness.

Theorem 1. For the system of Fig. 7, assume that

(A1) HZ(s) is strictly proper and exponentially
stable (48)
(A2) H%(s) is strictly positive real (SPR), i.c.
H?, (shisstrictly proper, exponentially stable,

. . L . L L _'..."'.
L T .. “ a2l s . an .. - R

and there existy i finite constant p > O such
that

Re [HY Qg 2 plHE ol . Ywoe [0, 2 ). 49)

Under these conditions, algorithms (43) or (44)
result in the following properties:

) I e*. &% #0ne W§ then, &, e, & and v
are bounded (in L,) #(t})—~0. and
e*(1) — et1) = 0. In addition. if * e PE. then
#(t) — 0 exponcntially.

@iy Me*. F* 7(0)e W5 and e PE. then #. e. £.
and r are bounded (in L, ).

(i) If (e*. Z*, #(0))e W and £¢ PE, then the
results of (ii) still follow by using the gain
algorithm (44).

Comments on Theorem 1. Though theoretically
significant. these results do not offer the engineering
design guidelines we would like to obtain. The
major reason is that H? (s)e SPR (condition (4,))
is virtually impossible to achieve for any actual
system. The primary culprit here is the effect of
unmodeled dynamics. Details on this issue may be
found in Rohrs and co-workers (1982). Further
discussion will be provided in the following
subsection.

Another technical hurdle is that the only realistic
case, insofar as thc tuned signals (e* &%) are
concerned, is when (¢e* &*)e W§. This is the
situation induced by continual bounded disturb-
ances, such as would normally be encountered. But
in this casc the theory requires that either £ € PE asin
part (ii} or that the adaptation gain is retarded as in
part (iii). With bounded disturbances present it is not
known how to guarantee ¢ € PE, since ¢ is generated
inside the adaptive loop. Note that part (i) only
requires that the tuned regressor ¢* € PE rather than
the actual regressor ¢ e PE as in part (i1). However,
this requires (e*. £ € W3, which is only possible when
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the conttol structure provides asvmpiote maodel
tollowing and distirbance regpection s s the
chissic vase stadied e the hiteratuee. Obvonshy,
unmodeled  dynanies and  bounded  disturbances
chinunate this weal situanion: A further difliculyy
regardme Co PEoas that tas oceurs at the expense of
any set-pomt regulation, which deteriorates w the
presence of P1osignals . Usng gam retardation does
not reguite persistent ezaitiition. but does require
some d proort mtormaton, ie. as i (44), the
forehnowledge of an upper bound on {7, which s
nottoodilicult toobtam. Although retardation does
handle bounded disturbance. the SPR condition is
sull requned.

(CY D pursir of the SPR condinon

“When a man pomts to the stars.
only i fool looks ar his figer.”
Anonvmouns.

The antent of this aphorism is to divert any
lingering annicties about the SPR condition. It—the
SPR conditon  simplv will not do as a major
building block in adaptive control theory. But that
does not mean a total abandonment of our aim; it
suggests. rather, a redirection. We should be
establishing a different path to the ‘stars.” For now,
however. we will remain earthbound and address
the restrictneness of the SPR requirement.

A necessary condition for H* € SPR is that H}.(s)
have a relative degree of one. As pointed out by
Rohrs and co-workers (1982). this imposes the
requirement that the relative degree of the plant is
known. ¢.g. examine the eflect on the plunt P in
(28a). This knowledge. however, is unavailable due
to the presence of unmodeled dynamics, as assumed
in (29).

The same type of restriction can also be seen as
follows. From (37a)

H* = (1 + AG*) (1 + A%, (50a)
- hyL

HY = - _. 50b
(%] T‘A ( )

If A is exponentially stable, but is otherwise
unstructured, then conditions for HY.« SPR include
(Kosut and Friedlander, 1983)

(V) f1t, € SPR (51a)
(2) A < 1. (51b)

Since 1% is dependent only on the parametric
model P* it is not difficult to find n* such that
2 € SPR. Unfortunately, the drawback is that
(51b) is a condition that is almost surely violated,
due to typically unmodeled high frequency dy-
namics.

R tonssos, Ik

Soct HE o SPR Gannever hold, canwe chnmate
the SPR requoement o add somie clever pltenmg to
destably alter H* o the perlecr modelimg cose
At s posable 1o abtam (Monopol, 1974
Landau, 1978 gande, 1979

Heyy o HEY positive constant (82)

Although a positine constant s SPR. and henee,
satisfies (51, condition (31h) s sull requied lor
H* (A = 0) 10 be SPR.

These disclinmers Tead us away from the global
approach typiticd by Theorem 1 to the establish-
ment of local stabihty results which e robust to
unmaodeled dynamices and bounded disturbiamces.

S TOCAL STABILITY CONDITIONS
In this section we indicate a means of obtaming
Jocal stability conditions. To clanfy the distinction
between local and global, consider. for example.
result (i) of Theorem 1. This result holds if
H* e SPR. H* exponentially stable. (¢*.3*%)e WL
Ze PE. and [7(0)] < 7 . Aside from the difficulties in
establishing SPR and PE. all the conditions are
virtually free of any magnitude constraints. and
hence, are ‘global’ conditions. In every practical
case, it is more than likely that magnitude
information is available. e.g. « priori bounds on
le*]l, . §*), and [7(0). as well as a bound on the
gains of M} and H¥%. For example. Egardt (1979)
shows robustness properties for minimum phase
systems with bounded output disturbances. Dead-
zone and projection mechanisms can handle small
unmodeled dynamics as shown by Praly (1983) and
Samson (1983). loannou and Kokotovic (1983a.b)
are able to give an estimate of the region of attrac-
tion without SPR or PE in the case of high frequency
parasitics. Persistent excitation. and the resulting
exponential stability property (sec equation (62) in
this section) also leads to robustness (e.g. Anderson
and Johnson. 1982a.b; Anderson and Johnstone,
1983; Kosut, 1983). Various other gain normali-
zations have also been suggested (e.g. Gawthrop
and Lim, 1982; Ortega and Landau. 1983). These
theoretical results remain incomplete, because they
do not as yet provide a uscful means of assessing the
impact of unmodcled dynamics, e.g. a frequency
domain bound on model cicor, dependent on the
‘return-diflerence gain® (e.g. Doyle and Stein, 19%1).
In this section we will show in Theorem 2, under
mild magnitude bounds, that the adaptive system is
(locally) L, -stable. Thiy result is quite general
because the conditions are independent of the
nature of the adaptive algorithm, c.g. dead-zones,
normalizations, or persistent excitation.
To facilitate the analysis we will only consider the
continuous-time error system (21) with constant
gain adaptation alorithm (43). It is convenient to

a—a o e - - -
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tansform (21) to the tollowmg vanational form,
which s more useful for local analysis:

\ = (, - \‘\, ‘S‘l"
AYVIER I A RN (53b)
where
X={R.é. o= —nt e —e* &= %) (S
S o= (7. 6. & 1) = (E'm, 6 (53d)

Details on transforming (21) 1o (53) are in Kosut
(1983). This form of the adaptive error system s
obtained by lincarization of (21) about ¢*, i* and
n*. The lincarized perturbation response is Xy,
almost identical to the lincarized system studied by
Rohrs and co-workers (1981). which was arrived at
by a ‘final approach analysis.” The remaining
nonlincar terms ., are contained in f(X). a
memoryless nonlinearity, and in F, a time-varying
linear operator. The characteristics of F, as well as
those of ¥,. depend on the adaptation gain and the
bechavior of the tuned signals. ¢* and &*. For
example, with the constant gain algorithm (43), the
lincarized perturbation response is

iy =1 + LM) ', + K&*e* (54a)
é,= —H} %7, (54b)
= —HL*R, (54c)
with
KN -K
F=|HY) — ¥KN) HYXN*K (55)
H:(l — {*'KN) H3EY'K
and where
1
L= :Ao (56a)
K=U+LM)'L (56)
M = {*H2.{% + e*HAGY (56¢)
N = E*H}, + e*HS. (56d)

Since boundedness of (¢*,¢*) and stability of
(H?. H}) are established by definition of the tuned
system, it is not difficult to see that conditions for the
stability of F and the boundednecss of %, are
identical. In fact, this follows ifand only if the system

S:(xo. W)= x, described by
X= A(;(“' - A’.\',, .\'(0) = .‘()CR" (57)

is stable (Kosut, 1983). Notc that the system § is
identical in form to the lincarized parameter error
system (i, E* ¢*)|— 7, in (54).

Assuming  that Se L, stable we obtaim the
following local stability.

Theorem 2
Suppose Fe L, -stable and 3, ¢ 1., . Hencee, there
enists a4 constant ¢ such that

U< e < r. (SK)
Under these conditions, if, for some ¢ < 2/¢,

g, = —ae 2ie 5N
then

el <& (60)

Proof. The proofis entirely analogous to the proof
of the lincarnization theorem on p. 131 of Desoer and
Vidyasagar (1975). Details for this case may be
found in Kosut (1983).

Discussion

Theorem 2 asscrts that the adaptive system is
stable. i.e. bounded inside an ¢-region, provided that
FelL,-stable and the linearized response is
bounded and sufficiently smail. i.e. condition (59).
No claims are¢ made about the mechanism that
provides Fe L, -stable and ;e L,. As mentioned
earlier, these are insured if the map S defined in (57)
is L, -stable. 11 is possible, of course, that X, € L%, but
I%. ), exceeds the magnitude constraint of (59).
Instability, however, does not follow because
Theorem 2 only provides sufficient conditions.

In order for theorem 2 to be of practical use, it is
necessary to provide stability of S without relying on
passivity of HY. We will illustrate this by using
persistent excitation. Consider the system

Xx=—AfH[f'x + u x(0)e R". (61)

It is shown in Anderson (1977) that if AeR"™",
A=A >0, fePE and HeSPR then (61) is
exponentially stable, i.e. there exists constants m,
A > 0 such that

!

IX(] € mE*|x(0)] + f me M MNu)dr.  (62)

(1]

We will apply (62) to provide stability of S as
follows. The system S can be written as

X= —A(,Efl,,,z'.\' + Agw — Ox (63a)
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where OO and Qe dehimed v

woon, v n, (6G3b)
N RN (63¢)
Q  aM Nl (63d)

Comparimg (63 with (61, intnitnels of e PL,
H,, ¢« SPRoand Q suthciently small” then the system
(O3) iequvalently the map ) remams exponentially
stable. Thus, by Theorem 20 an i-region of local
stibility exists The precise conditions are stated as
follows.

Corollary 21
Let 12 SPR and ;e PE with corresponding
positive constants 2 and nras defined in (62). Then,
Fel,-stable and X, e 1L f
am > = 3000, 24 ISH, L (H2)
+ e s, o HS (64)

and
1L < m = q) IS (65)

Proof. Follows directly by application of Small
Gain Theory (Zames, 1966) to (63). Details may be
found in Kosut (193).

Discussion

Corollary 2.1 shows that persistent excitation is
one mechanism which provides S€ L, -stable, and
hence. boundedness of X, and stability of F.
Therefore, if in addition, %, is sufficiently small (59)
then the adaptive system has a local stability.

Other mechanisms to provide stability of S
include dcad-zones, retardation functions. and
signal normalizations. Their effect on § needs to be
determined.

Corollary 2.1 also provides an upper bound on
the cffect of model error via (65). This is not yet in
the frequency domain form we would like, but the
bound can be quite large. Hence, H?, need not be
SPR. but only approximately so, e.g. H? € SPR.
Think of H}, being SPR only at low frequencies. In
the same way, the signal £ can be viewed as the
dominant part of £* causing excitation in that part of
the spectrum where the model error is small, e.g. also
at low frequencies. loannou and Kokotovic (1983b)
also discuss this type of frequency separation in the
regressor in the presence of high-frequency para-
sitics.

Thesc results still remain incomplete because we
need to lmow the relationships between 4, m and the
‘size’ of {, e.¢. Theorem 2 requires a bound on |14, ., .
which is a function of /2, m and consequently §. Of
further interest is the effect of dead-7ones and signal

notnthzabions  on the vaabonal  form (53).
Certamly the natare of the memotyless nonlinearity
v changes, as welbas the system S

o CONCLUSJONS

In this paper we have presented a framework for
an mput output theory of adaptive control. This
viewpaomt provides a means 1o reahstically  de-
termine the robustness properties of adaptive
alporithms . Moreover, input output concepls are
closely relited 1o measurement techmques, and
hence, can lead to the determination of usable
engineering  techniques. In control design and
analysis the most notable example is the use of Bode
plots for scalar systems (Bode, 1945) and singular
value plots for multivaniable systems (Doyle and
Stein, 1981). At the present time. no  similar
‘engincering  theory” exists for adaptive control
design. En route 10 establishing such a theory it will
be necessiry to resolve some of the open issues
raiscd herein. The possible benefit 1o adaptive
control engineering design is substantial.
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In this note we combine some carlier results [1]) - [4) to provide o

s & 4 .

put y, described by

framework for stability analysis of adaptive systems. We consider here the '.~.:
E continuous-time adaptive control of s scalar plant® with input u and out- -i

- Plant: y=4d+ Pu (1a) :i
Control: u= -0'z (1b) ;".j

- PN N P ..-jl
Adaptation: 6 = yze, 6(0) ¢ R (1c) !

]

g where P is linear with strictly proper transfer function P(s), d is an 5
l external disturbance, © is the adjustable parameter vector, ¥>0 is the cons- 'i
-

tant adaptive gain, z is the regressor (information) vector comsisting of )

filtered measurable signals, e.g., u, y, and references, and e is am error {-3

signal which drives the adaptation. System (1) can also be described in an ﬁ'::‘

. error system form (e.g., [7], [8]) by proceeding as follows. i
Define the parameter error by ;‘:%

) 6= ¢
6 := 6- 80 (2) g

- . o
-

- P N

where 6 _ ¢ R is a constant vector of tuned parameters i.e., the -

- parameters that would be selected if the plant P were known., Using (2) we :*
can rewzite (1b) as o

1

. e -6l 2~V ...x
- (3) e

v := 0'g =

b ¢ Extension to MIMO plant {as straightforward, e.g. [3]. _.
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where v is the adaptive contyol error signal. An equivalent sepresenta-
tion of (1) is given by the adaptive error system depicted in Figure 1 and
described by:

e=¢c, ~H v (42)
1=z, - szv (4b)
v = z'g (4c¢)
é = yze. 8(0) = 68(0) - 8, (4d)

where (e,, z,) are the outputs of the tuned system which is defined as
system (1) with costrol u = -6,z,. The operators Hev and Bzv are linear
with strictly proper transfer functionms Bev(s) and nzv(s). respectively,
which are dependent on the tuned parameter g,. From the definition of the
tuned system [3), [4), it follows that Bev(s) and Bzv(s) are expomentially

stable. By the same ressoning the tuned signals e (t) and z (t) are

bounded.
— = = e e e e e e e e e e == - e e e - - 7
! - 0
\ z,(t) = zv(s]“_‘——,
! '
' z(t) '
' '
! '
' -~ 0 |
" t * )3( ) '
e t
e (1) olz(t) el 1y L z(t)" L v(t)
* ' s |
- ! - _ P

Figure 1. Adaptive Erzor System
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One of the very useful features of this error system §s that the non-
linear effect of the adaptive algorithm canm be analyzed scparately from the
ll analysis of the tuned system. The tuned system represents an ideal which
would be achieved with the given structure of the adaptive comtrol. BHence,

the algebraic design procedure is separated from the nonlinear stability

Lame g aae aa o

7; analysis. Jt is convenient, therefore, to view ey 2o, 8nd 60 as ’'inpots’ ]:
o to the error system. The assunptiog, natuorally, is that e  snd z, are well
o behaved with e, small. Note that 60 need not be small., In the idesl case,
assuming perfect model following and no disturbances in the tuned system,
;Z; e, (t) = 0. If the disturbances are of a specisl kind then e¢,(t) -> O,
i.e., the tuned system exhibits servo action. The more realist.c case, how-
' ever, is when e, e L_ due to bounded disturbances which cannot be asympto-
E' tically rejected.
C
L. Global Stadbility Conditions
-
By global stability of (2) ve mean that all bounded inputs e, 2z,
. and 50 produce bounded outputs e, 6, and z. In gemeral, po restrictions

are placed on the initial parameter error qo other than boundedness.

g Sufficient conditions for global stability canm be obtained for (2) wusing

: - passivity theory (e.g., [5], p. 182). A detailed analysis can be found in
in [3]-[4). One of the conditions is that B"(s) is strictly positive real
(SPR), i.e., Bev(s) is strictly proper®, exponentially stable and there

exist a positive constant p such that

Re B_ (jo) 2 p|ll”(ju)|2. YeoekR (s)

T WY W O VOwWTwW W ey

*When l"(s) is proper but mot strictly proper, then SPR is doefined as
b Re B, (ju) 28>0, VueR
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Unfortunately, "ev(') e SPR is not robust with respect to even mild modeling 7
error, particularly bhigh frequency unmodeled dynamics [6). For example, 4
H”(s) ¢ SPR implies that the relative degree of B"(s) cannot exceed one, ”‘i
from which it follows that applying this restriction to (1) imposes the same )
relative degree restriction on P(s) as well. This is unreslistic, even in

this simple example.

Local Stability Conditions

Conditions for local stability require not only that the imputs e,

T .

z,, and 60 are bounded, but that these bounds are not arbitrary. The local

anslysis is facilitated by transforming the error system (4) to the

variational form

% |
x = x - Gf(x) (6a)
4
where x, X, G, and f{(x) are defined by *u
e e - e, ;,6

x= {2 )= fz2-2,)., =] _. (6b) __q
L -nev’;el. - !

x = z = -nzv";el. (6¢c)
Sy (1+ 07 2g + K, =

(

1
!l.'(l-:; IN) l.vz;l § 1
e - g ' K
G : B (1~ 32, IN) B ref (64) ]

':; ST !
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with

N := :'nev + e.nzv (6e)

M := Nz (61)
-1

K := (1 + LM) "L (6g)

and where L bas the transfer function,

L(s) = % v (6h)

with y from the adaptive algorithm (1c¢c). This error system (6) is arrived
at by separating the nonlinear cross product terms in f(x) from the linear
terms in X . We shall refer to 3, s the response of the linearized
system. This is almost idemtical to the linearized system studied by Bohrs,
et al. [62), which was arrived at by a 'final approach analysis.’ Note that
in this case the linearized system is the input to the nonlimear system.

The operators Kk and G are linear and time-varying due to their dependence

on the tuned signals, If the lipearized response x in (6c) is smell, and

L
if the nonlinear term f(x) is suitably restricted, them intuitively, x

would be attracted to some mneighborhood of x . The following theorem makes
this notion precise. Ve use the notation 1‘(.) and || ||. to denote L.T

sain and L —norm, respectively.

Jheorem 1: Soppose there exist finite positive constants g, ¢, and 8(¢)
such that

7.(6) £ 8 ¢ 1/e (7a2)
Izl ¢ 8Ce) => If(x)) < alsl (7v)

Then
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'l’Lllw £ (1-g ¢) b(¢) (7¢)

implies

r
i

.
| SPSVESPARET N LU

Hall, < 8Ce). (1d)

.
P

Theorem 1 follows directly from the linearization theorem of [5, p. 131].
Theorem 1 asserts that the error outputs x of the adaptive error system
are L _-bounded in an e-neighborbhood of the linearized response, provided
that the linearized response is small enough and that G e L_-stable. .

Condition (7d) shows that the actual response canm be arbitrarily close to

the linearized response. Since Theorem 1 provides sufficient conditions,
instability does mot follow if x e L: but exceeds the magnitude
constraint of (7c¢).

The function &(¢) in (7b) can be determined from the definition of
f(x) in (6b) and the norm selected. For example, if the norm on R® is de-

fined as |x| = Max |xi| and lello = soplx(t)f, then
i t

8(c) = ¢ (8a)

and uvsing the corresponding induced matrix norm, we obtasin

g = max (31. 32).

8, = 551 + Hz 1l x(1 + =) (8b)

5 = k(1 + n)

where

" J'Mv R

8o 2 max (y (H '), y (H )}

B2 v (N, k2 v (K) (8¢c)

b
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Although Theorem 1 provides conditions for locsl lb—stnbllity, these

do not immecdiately provide a region of sttraction, i.e., bounds on e, 2,
and Bo' These bounds in turn are determined from the set of allowable
reference commands, plant initial conditions, and disturbances. Since o
and z, are bounded by predetermined porformance goals of the tuned system,
it follows that Bo is the unknown driving factor governing the size of
||xL||O. That the initial parameter error vector occupies this position of
villainy should come as no surprise. One way to offset large initial para-
mcter errors is to keep the adaptation gain y small. This has the effect of
reducing large system transients, however, this may be less than prudent if
the system is initially unstable or lightly damped.

No claims are made in Theorem 1 about the mechanism that provides
xe L: and G ¢ L_-stable. However, it follows from the definition of the
tuned system that e, e L _, 2z ¢ L: and nev' nzv e L _-stable, thus, M in
(6f) is L_—stable. Hence, a term by term inspection of G (662 and X
L ¢ L: and G ¢ LE_ stable, if and only if eL € Lz.
Looking at (6c) we can also describe eL(t) as the solution to the

(6c) reveals that x

differential equation,
E(t) = —y(ME)(t) + v w(t) (9)

with w= z e, and §(0) = 8, * Referring to (6) and (9), the operator K is
equivalent to the mapping from w into §{. Hence, the stability analysis
of (9) is of fundamental importance,

ersistent Excitation and Exponential Stabilit

Equations similar to (9) have been studied by invoking s persistent
excitation condition on z (t). The following definition and lemma from (1]

provides the basic result,

Definitiop: A regulated function f(.):R _-) pesrsistont]ly excjiting,
denoted f ¢ PE, Aif there exist positive constants Gyr 8y and o such that
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%
Lemma_1: Consider the differential equation:
F E(t) = —yf(t) (BL'E)(t) + yw(t), 20 (11a)
t

If f ¢ PE and H(s) ¢ SPR then the map ({(0),w) I-> ¢ is exponmentially

stable, i.e., there exist positive constants m and A such that,

| -At ¢ -A(t—=)
k, le(e)l ¢ me “TlE(O) ] + [ me Iw(x) lac (11b) |
. ° !
- The usefulness of applying Lemma 1 to determine stability comnditions
of (9) is made apparent by writing B, a5, ’ #

B =H + B (12)
eV ev eV

where iev is the nominal representation of nev and iev is the deviation
induced, for example, by modeling error. Combining (12) with (9), and using
the definitions in (6) gives, -

' P "-'- .
Lttt s | S e e f
o ‘a e ‘s & ‘4 4 PP a4 R T )

§ = —yeH it ¢+ vQt ¢+ (132)
where

- :.i.vz; + o.B":; (13b) o
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1f ﬁev (s) ¢ SFR and 2, ¢ PE, then using Lemma 1 gives, -

t
flece)l < me  leorl + f yme @) (v) + wie) lar  (14) ,
0 b

Hence, k from (8) is,

gl N U

k=3 2 7 (D) (159)

PR [y IR

snd from (14) with ¢ replaced by BL we get,

1B 1, < (1 - ma) ™! (gl + ymllz e 11 /a) (15b) ”

provided qmq ¢ 1 where 4

#‘. ¥
s a= Nz d12 v @ ) + sollz 1 He 01 2 v (@. (15¢)

Combining (8), (15), and Theorem 1 gives the following result.

emma 2: The sdaptive system (1) or (2) is locally L _—stable if for some

R Sananaac abg
..

s < 1/3,

|

g 1.1 + ymllz eIl

] 6.l + mllz_e 2N

.- - _ 0 'w

- o =1 —Lu —— >0 (16s)
-

g A and

1y
E . ™Mq { © (16b)
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Jeoma 2 together with (15) snd (R) provides an eaplicit upper bound onm

1o, le ], snd the amount by which H can deviate from a nominal H

L = 0 ev ev
which is SPR. If the bounds sre satisfied then Theorem 1 asserts that the -
signals in the adaptive system (1) sre all bounded.

-

Unlike the global stability case where the bound on the deviation nev

is severely restricted, the bound here can be large.

LAV GO D i

Concluding Remarks

The stability analysis provided here involves establishing the

a4 s 5 s

exponential stability of a differential equation (9) which arises in the
study of most adaptive systems. Althoogh the connection between exponential
stability of (a) and persistent excitation is known [1], it is important
here to obtain specific formulae for the rates and gains involved, ec.g. (8),

(15), (16). Other methods to obtain these values can be found in [9] and

[10]. Note also that Theorem 1 only requires L_-stability which is

certainly provided when (9) is expomentially stability. However, L _-

stability can be obtained by using s nonlinear adaptation gain in (1¢),

i.e., 6= vh(z,e). For example, b(z,e) can arise from using a dead-zonme,
leskage, or normalization [11). Such schemes can be incorporated in the
general framework presented here but require further analysis in order to

obtain explicit signal bounds.
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CONDITIONS PUK

LOCAL STABILITY

Integrated Systems, Inc.
101 Univerasty Avenue
Pslo Alto, CA 94301

ABSTRACT

The question is ezamined of when an sdaptive
control system is robust to unmodecled dynamics and
unkoown bounded disturbances. Conditions are
presented thast ensure the existence of soch
robustness properties, but only locally; d.9.,
restrictions sare Placed oo the bebavior of signsls ia
the ides)l, perfectly tuned adaptive system. Locsl-

L -stability is investigated when certsin tuped
siynals are assumcd to be persistently excitanmg.

1. ODUCT 10N

Theoretical investigations op the stadility of
adsptive control systems bave focused almost entigely
on developing conditions that guarantee global
stability. e.g., [1)-(3]). These results are global
in the sense that initisl comditions snd extermal
signal magnitudes need only be boumded, Specific
bounds sre pot required. 1In addition, the results
provide sufficient conditions. One of the conditions
is that s particular subsystem operator be strictly
passive with finite gain or, in the case of linear
time-invariant systems, the operstor is strictly
positive gesl (SPR). This condition resclts from
application of the Passivity Theorem; specifically,
the adeptive system can be reconfigured into two
subsystems: & ‘feedback’ subsystem (the adaptation
lav) that is passive, and s 'feedforward’ subsystes
which is required to be SPR. This comdition turms
out to be quite restrictive. In the first place, the
SPR condition pecessitates that the system tranafer
function (ip the scalar case) have s unitary relative
degrec. As pointed out by Hobrs, et sl. [4), it is
virtually impossible to guarantee unitary relative
degree for an sctual system. Secoandly, the SPR
¢ondition has extremely liwited robustmess to
uamodeled dynamics ($).

In this paper, conditions sre developed that
gusrantee the existence of Joca] stability end
robustpess properties of the adsptive system, i.0.,
conditions which tske into acount the size of iaitial
paramcter error and external sigmal magnitudes.

These conditions are imposed on certsin subsystem
opegators, which bave s time-varying dependence on
sigoals that srise from an jidesl fictitious system
where tle sdaptive gains are perfectly funsd to the
unknow: t to be controlled., The mechanjsm for
Jocal ets. 1ty which §s ezamined here s that of
persistont eacitation (7], (B]. Under these
conditions, ve develor a specific bousd on model
ersor which ensures conditioss for locel stedility.

-»
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2. NOTATION

Let L denote the set of Lebesgue integrable
funcgions £ R, = R® with finite porm ||l"9:
e (J Hx)IPa)¥P gof pl1.) asd [llsll_ :=

sup Ta(t)l. where l.1 denotes & morm on R°.

Q;gilcrly. let L% denote the extension of L"
consisting of funfiions x(.) such that s . VT
(t) depotes the truncation of x?t)

2 0, whese
st T, d.e., "x_(t) = 3(t) for t < T, and (t)
=0 for t > T. The morm on L is denoted by

1 pe
either lllTl'p or ll"'Tp'

3. ADAPTIVE ERROR SYSTEM

In this section we present an adaptive error
systes which is represeantative of a large class of
sadaptive control systems. The ersor system will be
presented in two forms: o parameter varistional form
snd a full variations]l form. The parameter
veriations]l form was developed in detsil in [Sb) and
is used for global stability analysis. The full
varjations]l form, to be developed here, is uvsed for
local stability anslysis.

3.2 aramete aristions] Error t
To facilitste tde development of the error
systew, consider the simple mode]l reference adaptive

controller (MRAC) depicted im Fig. 3-1 with:

tain Plas
yeodo Py {3.1a)
d := externsl] disturbamce + plant inl!ll{
conditions
Refozepce Node)
l' (3.1%)
r := roference command
Adaptive Coptiro)
y
.- -(0,. 02) - - = 0's (3.1¢)
® := adaptive seins, = := regressor
- Adaptation Lew
®cBie, BB 10 IR

o iy - y,
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bBefine the sdapiive goin g3sug by
66 8, 3.2)
vhere 6, = (6, 0,..)' 4s & constent vector of

tuned gasns; l.*.. :‘o values that would be selected
it the plant P were Lknowu. Using (3.2) we can
rewrite (3.1c) as

e -6, 2 - v (3.3)
v e 5'1
where v is the adaptive control ergor signal. An

equivalent representation of (3.1) is given by the
sdeptive ersor system depicted in Figure 3-2 end
dealribed by

€= e, - Hev v (3.49)
1=2 -8B v (3.4Y)
b4 3
ve2'0 (3.4¢)
6 =8, + Lze (3.44)
where (e, z.) sre tbe outputs of the gtuned system,

as shown in Figure 3-3; 00 is the initial valgoe of
tbhe adaptive gsip error, and H ., B v’ and L asre
the joterconnection operators. *¥or ohe simple MRAC
case considered here (Fig. 3-1), the tuned signals
are:

-1

e, = (1« PO,I) [ ]
+ [0+ Po, ) Pe,, - B )s (3.52)
2, = (e, ¢ Ygr -x)’ (3.5b)

and the intercomnections have transfer functionms,

B, (s) = (1+ P(s)6, ) 'P(s) (3.6a)
B, () = (1 + P(s)0,)  P(s), 01 (3.68)
L(s) = (1/3)B (3.6¢)

Although the error system (3.4) has been
developed here for a very simple MRAC system, the
form of (3.4) is genderic snd spplies to practically
sl] single-input-single-output sdaptive controllerss
and filters [5]. Moreover, the extession of (3.4) to
the multivariable case requires only that v asnd e
are vectors snd that H and B age
multivarisble of eo-put!‘lc di-onfxoll.

Specifically, (3.4c) snd (3.44) are replaced by

ve2'6 (3.4¢)°
8- 30 + 1Ze (3.40)°
where Z 1is s Dlock disgons] matriz of sppropriate

dimensions ssch that

Z = disg "l’ ceesr 8) (3.40)'

where the regressor vector s
" - ('il es o P ';) "0“"

Hence, oach adsptive control channel is gives by

., -- o; By 1=1, ,ce0 ® (3.43)'

o this papes, the enseing snalysis will be
$1Justrated by using the ergor system of (9.4). The

A " "R “Tha "t
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estension to the mulisvasdable case fulloms
tmnediately,

(ue of the very useful festures of thie erros
system is that the nonlivesr effect of the sdaptive
slgorithm can be snalyzed sepasately fsom the
snaslysis of the tuned system. The tuned system
sepresents on ides! which could be schieved with the
siven structure of the sdaptive comtrol. Hence, the
slgebraic design proceduse is separsted from the
sonlinesr stability analysis. Jt 4s copveniest,
thosrefore. to view ¢,, 3, ond @ ss ‘inputs’ to
the error systes. The sssumption, nglnt.lly. is that
e, snd 2. are well bebaved with o, smsll. Note
that @ need not be small., In the classic case,
assuming perfect mode] following and mno disturbances
fo the tuned system, e (1) = 0. If the disturbances

are of & specis) kind then e (t) -> O, i.e., the
tuned system cxbibits servo action. The more
realistic case, however, is when e ¢ L, dae to

bounded disturbances which cannot be ssymptotically
rejected.

3.2 Globa) Stadility Copditions

Conditions for global stadility require that
A (s) s SPR. Tbis arises because proofs of global
sfibility utilize passivity theory (e.g.. (9], p.
182). A detailed snalysis can be found ian {1)-[S].
Unfortunately, though of theoretical significance,
these type of results do not offer any practical
engineering guidelines. The msjor resson is that
B (s) ¢ SPR is oot robust with respect to even mild
lgxelin; error, particularly high frequency unsodeled
dynamics [4]). Since B__(s) s SPR implies that the
relative degree of B tY) cobmot exceed ome, it
follows that lpplying.lhla restriction to (3.6a)
imposes a unitary relative degree restriction on
P(s) as well, This is unrealistic, even in this
simple example,

Anotber view of the restrictivenmess of H _ ¢
SPR is from robustmess theory, e.g., [15). SGppose

that P(s) in (3.1a) can be expressed as belonging
to the set of transfer functions
P(s) = (1 + A(s))P(s) (3.70)
lagjw)l  8(w), Vu s R (3.7%)
Bence, P(s) is s mominsl model of P(s) and A(s)

represents modeling error, e.3., high frequency
unvodeled dypamics. We can sow write

B =8 +§ (3.8s)
(1] ev ey
where the momimal is,
- - _1 -
l.' = (1 ¢ Pﬁ,l) P ¢ SPR (3.8b)

and the deviation induced by modeling error is,
-1

- = - -1 -
B =B, 1++P,)" (1+Po,)

oy 3 A

(3.8¢)

It 4s eabown in [S] that the largest toleradle &(w)
in (3.7b) to emsure l.' s SPR  is bouaded by
8(uw) C1 . (3.9)
Agein, thie js unrealistio end is violated evea by
the most mild form of mamodeled dysamics. Note that

(3.9) and the monitary relative degres restrictios
both mecessarily arise from the SPR coadition.
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3.3 Jul) Negrsgsens) jJose

The ersur system (3.4) can be trsansfurmed to the
fellowing variationsl fore which ds more useful for
lucal stabslity analysis, i.0.,

(3.10s)

3« 3 - Gf(s)

L
where the quantities above sre defined below by

: v
S Y = -2, ), f(z) := |}
) 0 -0 e
(3.10b)
eL “ov ‘OL
z, e 1 S -nzv:;OL (3.10¢)
- -1~
OL (1 + LM 90 + Ko,
B (1 - 2, KN) B 2.k
ev
G := (l - 1, KN) H:vt.l (3.104)
-K
with
N := + e,B
(3 “Yoe) 2V
M o:= Nz (3.10f)
-1
K := (I « LM) "L (3.10g)
snd where L bss the transfer function,
Le =1p (3.100)

with B from the sdaptive algoriths (3.14).
The mode]l (3.7) is arrived at by separating the

nonlinesr cross product terms in f(z) from the
linear terms in . ¥We shall refer to as the
response of the liBearized system. This i almost

identical to the linearized system studied by Robrs,
et al. [4s], which was arrived st by & ‘finsl
approsch snalysis.’ Note that in this case the
linearized system is the imput to the momlinesr
system (3.10s). The operators Kk and G are linear
and time~varying due to their dependence on the tuned
signsls (e,, 3,). This model (3.10) will mow be
utilized to develop local stability conditions.

4. NDITIO) OR_LO T

If the linearized response in (3.10) is
smell, and if the monlinesr term f(x) 4s suitably
gestricted, then intuitively, 3z would bs attracted
to some meighdborkood of x,. The following theorem
mskes this motiom precise.

(3) If 3 coastast §g_ such that,

1.(6) S, ¢ (4.1)
and if

Hs 1l ge, 1 -

..o.l!). .. s (0, ’I.t: 2)

AR AE A K Al A SR 1 40 A R

then

TR (6.3

(il) 1o eddition, #t, for some p s (3,°),3
constant .p svch theg,

1P(G) < 'p C2/s (4.4)
then

-3
ll:ll’ < |P¢.I2) ||1L||p 4.3)

Proof:

Theores 4.1 is based on the limearizstion
theorem of (9, p. 131). The proof, as specislized
here, is inm Appendis A,

Remaghs

(1) Tbeorem 4.1, part (i), ssserts that the
error ovtputs 3x of the sdaptive error systems age
L_-bounded inm en s—-peighborbood of the limearized
gesponse, provided that the linesrized response is in
L_ snd is small enough (4.2), snd thst G s L -
stable (4.1). Condition (4.3) shows that the sctusl
response can be srbitrarily close to the limearized
response, if llx Il is small enoogh (4.2). Since
Theorem 4.1, part (17. provides sufficient
conditions, ipstability does pot follow if z ¢ L:
but exceeds the magnitude comstraint (4.2).

(2) The results in part (ii) sre stronger than
i= psrt (i) since they can only be applied when [
L° for some p e (1.-) Looking at (3.10), this Can
olily occur if 12.e. ¢ L® whbich, in practical
situations, -llost novef occurs due to the presence
of distorbances in L_. Besce, part (ii) of Theorem
4.1 does not offer lny practical advice and we will
focus only on part (i),

(3) Frome (4.2), the largest upper bouand on
||IL|'. is 1/23_ which occurs when s_ = i/g,.

(4) Although Theorem 4.1 part (i) provides
conditions for local L.-utlbillty. these do mot
immecdiately provide s zegion of attractjiop., i.e.,
bounds oo e,, z,, sud 6 . These bounds in turn
sre doter-lnod from the set of allowadble refereace
commands, plant ipitial comditions, amd disturbances.
Since o, and 2z, are bounded by predetermined
performsnce gosls of the tuned systems, it follows
that 0 is the woknown driviag factor goveraming the
size of° f1z, Il . That the imitisl parameter error
vector oce-p&cn this position of villaisy ahould come
as no surprise. For eaample, if @ is sssll (order
¢, ) then the adaptive system stays sesr the tuaed
lyotol for small (order U ) iapots o,.

(5) No clasims are sade in Theorem 4.1 part (i)

sbout the mechaniss that provides sl  end G
L -stable. However, it follows from the dottnlt‘on
of the t-od system (3.2) that e s L_, 3,8 L,
and B s L_-stable, thus, M 1In (3710018
'ltl‘!t. io-eo. s torm by tors t-n,o:t!o-.ol ]
(! 104) esd 1z (3.10c) reveals that 5. L, ond
Gse L_-ntlblc. if and only if:
-1= [} - ]

(I + LN) 0. s L. ", s R {(4.6)
and

K oL -stable (4.6))
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Mote precisely, we have the fulluwing sesult,

lewws 4,)

Suppose that o tuned solution O & R“ eaists,

Let L(t) denote the solution at time t of the
diffesential oquastion,

L(t) = —HIML)(t) + w(t) t20 (4.7)

Tle:. 1 L: snd an L _-stable gf and only if
e L_ for 11 {(0) ¢ R and w e L.

Proof:

Using the definitions of K and M in (3.10),
if 3(0) = 0 thben (4.7) represents K : w |-> ¢,
Thus, K e L _-stable if w |-> § e L _-stable. Also,
if 3(0) = @ end w = z e  then } = 6 from
£3.10¢). negcc. without sny further restrictions os
eo e R or z.e, s L_, the result of Lemms 4.1 is
established.

Remarks

Lemms 4.1 identifies the L_-ltnbillty of the
systee (4.7) as being crucial to obteining local
stability conditions from Theorem 4.1. This
condition is not sufficient. Even if the conditions
of Lemms 4.1 are satisfied the adaptive system is

locally stable provided that |lx Il_ is small
enongh, i.c., (4.2) wost bold. Nbmetheless,

estadblishing (4.9) is a first step. -

Recall that Uz Hl_ is small if lle Il_ 1s
spsll, hence it is mecessary to control the size of
these sigpnals. Comparing O, iz (3.10c) to (4.7),
some of these magnitude conditions can be secured by
lowering the asdsptation gain, i.e., the norm of the
matriz B im (3.1d) or (3.10h).

S. PERSISTENT EXCITATION

In this section we examine persistent excitation
as & mechanism to provide L _~stadility of (4.7), and

bence, locsl L_-stability of the adaptive system
(3.10).

Pefinitiop (8)

A segulated function f(.):R, =) R" 18
pegsistently exciting, demoted f{ s PE, if

positive constants 8. 8, asd oy such that

l*ls
B { £(1) f(t)'ot S o) I, ¥s s R

(5.1)

4

The relationship between persistent excitation and
stability of (4.7) is given as follows,

Lepme 3.2 [8)

Consider the differential equation:

B(t) = —f(1) (BE'Q)(L) + wit), ¢t 20 (8.2)
1f £ ¢ PE ond HB(s) ¢ SPR then the mep (L(0),w)

I-> ¢ 4is ezponentislly stable, i.,e., thege exist
pusitive constents = esd L such thet,

1
10 < we* 1o« / me MY e fae

° (s.3)

Copditjons for Rubupinossy

The usefuloess of spplying lemss 5.1 to
determine robust stability conditions of (4.7) is
made spparent by procesding ss in Section 3, i.0.,

%v"%v‘“n (5.4)
where M s the nominal represestation of l.v
snd B v is the deviation induced by modeling eorror.
Co-binfu; (5.4) with (4.7), snd using the definitioas
in (3.10) gives,

¢ = -Br Bzl +Q v (5.5)
whese
Q := B(M - l.".'l;) (5.6)

If B (s) « SPR end 3,8 SPR, then (5.3) of
Lemms (5§ applied to (5.5) gives,

t
Il < mertl1eor] + J 2e2 ) J(az) () + wix) lae
° (5.7)

Therefore, if Q bas o sufficiently smal]l gain then
(£(0). w) {-> ¢ & L_-stable, and bence, the sdaptive
system is locally Lb-otlble. Specific conditions are
given as follows.

lgooren !.l

Suppose z, s PE, H 3) s SPR, aszd hence, froms
Lemms 5.1 t(t) im (5.5) is dounded as sdown in
(5.7). Then, the adaptive system (3.10) is locslly
L _-stable if, for some

e s (0,0),
7,(F) ¢1-4q (.8)
where
- A o
Q= 5o He I MBz [ v, (B ) (s.9)

and the operator F Dhas ths integral form,

-(A-a) (t—)

t
] [
(Fu)(t) = £ ne 2, (V)(B xiu)(t)ex

(5.10)
Proof: See Appendiz B,

Remasks

(1) The s-ssuperscript sotatios 2% means that
if B bhas transfer fusotion H(s), thes 2* hae
transfor fuaction N(s-s). Thes, @ ¢ (0,2) ¢
ferther limited so that B__(s-a) oend B__(s~a)
somaisn ezponesntially cllbl" othervwise th"L‘-gat-o
is (5.9), (5.10) asze iafiaite,

{2) What Theorem 5.1 ssserts 4o that if 3, ¢
PE., ond if l. is slose ensongh to being BPR, then
wader suitable’lmel) gein conditions (5.8), loecal
stability ean be guaranteed via Theorem 4.1. The
erux of the matter ¢ to estadlish thet vy (F) 1o

ssfliciently small despite a zeasonadly 10;.0 5.'.
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Codsulassen of  y,(F)

Intuitively, 4f the zenge of dominant
fsequencies of 1, e sufficiently sepursted from
the frequencies where N (ju) 4s lerge, thon v, (F)
sould be smell, o.3., 3, s persistent]y saciting
#t ‘low’ frequencies whese H is approximately
SMR. Ve will formelize this §3tion in Theorem $.2
below., Farst, howerves, we need the following results
from |10) for deterxining a large class of
pexsistent]ly exciting sigunals.

Definjtion $,) (10)
A function f(.): R - B® has s gngctrgl line

st frequency w of ltzl‘lude l‘(u) s C if

g e -
1im = [ f(t)e gt = a l0), Vs &R,

T s (5.11)

Jut

when u‘(u) ¢ 0, f bhes s spectral lime at w.
Lesma S$.2 [10])

Suppose f ¢ L_ bas spectrel lines at
frequencies Wpr eree @ of amplitudes l‘(ul). cess
s o). Thes 'f ¢ PE, Pit

rask ln‘(u‘). ceee n‘(u’)l = a (5.12)

Jbeoremw §5.2
Suppose that:

(A1) z_ ¢ PE (= 3z, bas spectral lines at
frequencies o ., ..., .p with rank
l.‘.‘ﬂl). cees n!.(ov)) - n,

(A2) i"(-) s SPR

Then, the sdaptive systen_(3.10) is Jocally L.-.tuble
i1f, for some a 8(0.1), B.v(s—o) is stable and
bounded by,

-9

"nv(j"-c)' < s} sup |-' (o) | ‘:f
[umu)? + a-aht2
oVUl.
l-’.(»k)l +

(5.13)

with m, A from (5.7) and q from (S5.9).

Proof
See Appenmdisz C,

Riscussjop

(1) Theorem 5.2 provides e» gxplicit mpper
bounéd on the emouat by which l. ¢os deviate from s
somisal B _ which fs SPR., Th8:, 4f (5.13) holds
ond if llﬂ'll. is ssfficiently small (4.2), thea
signals i &bo sdaptive aystem are guaranteed to de

boanded.

(2) Uslike the glodal stabdility sase whesre the
bosad os the deviation @ is severely restricted
(3.9), the bouad dege can’fe quite lerge. MNoyeover,
the bound cam Vo dotermined from the spectral
propestios of s_.. Recell from Lemma 5.1 thet »
sad )\ s (5.13’ are fenctions of the spectral
propestics of 13,.

.. . .o Cep
Ce . Catere viMges AT
ot et R e s S
DI P SR PSP SR WU Y . L A OV TR T L VI, T A RO

L o, -

L Bl S Yt i S ~Ea\ et dhar. 4 Padit ot pi i il oI s giC o i SN g B o BrlL S i

(3) Stnce @ o (0,0) $n (5.13) can be
ssbitsssily smaldl, and since
9 <C 1 ds didely due to Jle Il being smsll, 4n
follows that & reasscnsble spprozimation to the
robustnoss test (5.13) s

- 1
‘"cv""" ¢ ®p sup l-' (u.)' ‘:‘
l(u-ul)z . lel/' .
l’. . )'l , Ywe R‘ (5.14)
2 |1

[ ]
6. CONCLUDING REMARES

6.1 est Procedures

The results of Theorem S.2 can be of practical
use since they provide the basis for developing
sobustness test procedures. The most obvious way to
apply Theorem 3.2 is to determine the model error
bound--the right band side of (5.13)--by either
snalytical or espivicsl mesns. Once the bound is
found, it remains to gemerate ressonsble ostimates of
the model error snd compare this to the bound.

Ap slternstive procedure is to verify Lomma 4.1
by direct empirical mesns. In othesr words, we can
vtilize Theorem 5.2 to give qualitative guidelines on
the required spectral characteristics of 1z apnd
then simulate (4.7) for a variety of ipitial states
$(0) eand inpuots w e L:. This latter approach is
not theoretically perfect, but is s practical means
to gain understanding of the sdaptive systes
behavior.

6.2 Other Mechsnisms fo oc tabili

Although we bave focused on persistent
excitation as s means to ensure locsl atadility, this
is by no means the only way. For example, if the
sdaptation algorithe (3.1d) is modified to include o
retardation (see, e.g., [11]), [12)) thea L(s) i=
(3.10b) will bave the form [13):

. - B
Ls) = 543 B. B=B' >0 (6.1)

where (a,b) are positive comstents. This mesns
that 4f 3, is a copstent vector, thea the
lisearized system (3.10c) is L_-stable by passivity
srguments [13). (Note thst it is mot possidle to
prove (4.7) stable for z_, constant with L(s) =
(1/3)B as ip (3.10h).) BHence, uvsing (6.1) together
with theorems on slowly varyimg systems (:. steys
sear conatant long smough), we cam arrive st
conditions for lJocal L_-stability which ere
independent of porsistent eacitstion (see [13) for

preliminary results).

APPENDIX A
PROOF OF TEEOREM 4.1

We first show that f(z) is (3.10b) Dhes the
property that ¥s > O,

Il ¢o =l ¢ § lal (A.2)
Fzom (3.100),

Il = (150812 « 1551%)Y/2
P T R L S
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L2, by bolding lal fised

¢

N b N

<

by lal (.
§n-. sssume tewporarily that (A.3) bolds for al)
s s B, 1i,e.,

ltea)) ¢ (s72)hs), W2l g o (A.28)
leca)) g Cez2y lal, wlisl > e (A.20b)

Fros (3.10)

Hall llL"lb + l'G((l)llT_

e &
Sl by« s Tl . by (4.1)
Sl s v v Tl A3

using the temporary assumption (A.2). Since L e L,
(4.2) and ||xL||1. < lllLll..

Pl s Hs N+ s e/2) Hally
CeQamg_e/2) « (g /) Hall,  (A4)

by (4.2). Since g ¢/2 <1 by sssumption (4.2),

||x“.l.b e

and hence, |lsll_ ¢ e. Looking back over the proof
we see that the temporsry sssumption (A.2) is never
violated, i.e., the bebavior of 1(x) for lxl > s
(A.2b) is mever needed under the assumptions of
Theorem 4.1. This proves part (i).

Part (ii) proceeds anslogously except now we use
the L -norw. Note that part (ii) uses ?|x||. <s
as ap assnmption.

(A.S)

APPENDIX B
PROOF OF THEOREM 5.1

We vse the e:gonontill weighting techniques from
(9}, (14). Let y denote the expomential weighting
opezation,

(2 (1) = y%(1) := o2t y(1) (B.1)

If y=Bu thes let B® desote the map e 1=yt
For szample, 4f B bas transfer function H(s),
thes B® Ddas transfer function H(s-a).

Pefipitiop B.1 [14])
2

An operator B : L, =) L- bas decaying 1 .-
mepory if s no-.o.nifvc. sopincreasing !-nction
pl.) s l.l ssch that

t
pmn (12 < S pi-nleterPer, ¥r20, WeeL],.
° (8.2)

Lemme B, (14)

11, for some @ ) 0, =stable, thea "B s L -
stadle,

Apply Lemma B.) as follows: The exposestielly
weighted version of (5.7) is,

Suppose N : L;. ;z L;. hes docaying Ll---ory.
s Lz

T T e T AN T TV Y e DTN T

AtetET e el emmgewmam el e,
e SR -‘-.c-.':",‘.'l,b\ SN

- . T T .

[}
|{'(l)| s oi“ “"g40) + [ -e(k-a)('-‘,|.°(‘) .
°

@ %) (v) 1dc (.3

This, togetber with the definitions of F (5.10) and
q (5.9) gives,

llg'll,.2 St 200 )0 | e 3B ll-'lln
+ (¢ v, (P llg‘ll.n (8.4)
Using q ¢ 12(F) <1 from (5.8) gives,
ey, < ey, FN7Y [/ 200-0)  [2(O)] o
E I-;llnf (8.5)

RBonce, w° |-> ¢® ¢ L_-stable. Moreover, using (B.3)
wl->¢ is exponenllzlly stable and bence, from
definition B.1, v |-> ¢ bas deceying L_-memory.
Therefore, the conditions of Lemams B.) ave sstisfied;
consequently w |-> ¢ ¢ L_-stable.

APPENDIX C
FROOF_OF THEOREM 3.2

We need to calculate the L _-gain of F (5.10)
under the assumptions of the thzotcn. From (5.10),
F:x2[->)y bas the form,

y = Fx = Gz, Hi.x (C.1)

where G and B have transfer functioms,

G(s) = (€.2)

aﬁl—n.
H(s) = i"(s-e) (c.3)

Since F 43 causal, the Lz-.nll of F s,
Hyll

v, (F) = sup 'llTllf (C.4)

2
xcL.IO
iyl
= gsup — (by Parseval's
2eL3/0 =il
Theorem) (C.5)

where y(juw) and x(ju) are the Fourier trensforms
of y end 3z, zespectively. Using ssswmptioa (A1)
of Theores 5.2,

) 4 ) 4
yiju) = € T G(ju)E(ju

ITRIN D1 W% RETE ST T (.6
Bence,
 J ) J 2 1/2
ly(j)l S et} [E & ll(.lrju.-]utl ]
it (.
whore
ole) = (ll"l. (ut)l)(l:plﬁ(ln)l(Jo-
k
;..)l.l-'.(.h)l) (.8

Thus,

Lt 3 1/2
""ll o (] lytie)l‘en)
-t
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- » 18 2 "2
Lsv, vl o o hige Sy du) dul
- BN S W A |
+ plevp c(u)) Ilnllz (c.9)
-

Using the definition of gain (C.5) togetbor with
(5.8) from Theorem $.) gives,

(F) ¢ p sup c(w) <1 - q (C.10)

[

72

Condition (5.13) follows by substituting (C.2) asnd
(C.3) into (C.10) and rearranging terms.
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Abstract

This paper reports some preliminary results concerning robustness
properties of adaptive control systems to unmodeled dynamics and bounded

disturbances. The analysis is conducted from the viewpoint of input/output

:_{ stability theory. Generic representations are proposed for both continuous-
?f time and discrete-time adaptive systems and conditions for stability and

T*{ robustness are developed for each case. These conditions require varying
]I degrees of s priori knowledge about the plant, e.g., global conditions in-

volving minimal knowledge and locsal conditions imvolving more restrictive

assumptions.
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1. Continuous-Time Case

A. Globel Anslysis

A large cless of continuous-time adaptive systems can be represented by

the nonlinear system (Fig. 1):

€. = c: - H(p)vt. v, = {i n
t, = & - Gy, (5)
fy = AMR0), e = e,

where e, es v, ¢R, 8nd = t: e R®. The operators H(p) and

t’ t t’ Ct'
G(p) are proper rational functions with real coefficients in the differen-

tial operator p, i.e., (px)t = % ¥We will refer to e, as the output

error, n, s the pr rameter error, tvt as the control err:r. &t as the
regressor and A(.,.) as the adaptation gain. In genmeral, on:? et and
t‘ areﬁfvailable as measurements., The parameter error L := L ne*,
where n, is the adaptive estimate of the true, but unknown, parameter n®,
The signals e: and C: are referred to as the tuned output error and

regressor, respectively, meaning that these signals are generated from an
'ideal’ system with the desired parameters n ¢, i.e., G} = n¢, Details on
the relation between (Sc) and the actual system (unknown plant + adaptive
controller) can be found elsewhere, e.g., [1]1-[3]. In general, the unknown
plant is imbedded in G(p) sasnd H(p), which, incidentally, are also func-
tions of the true parameter n®.

Since n* as well as the plant are unknmown, it follows that R(p) and
G(p) are unknown. However, in order to establish conditions for stability
of (Sc), it is mecessary to know something about H(p) and G(p). The
ssme remark holds for knowledge about the toned signals e: and t:. The
following theorem gives conditions for global]l stability of (Sc). The term

‘global’ refers to the intention of requiring minimal, but reasomable,

restrictions on R(p), G(p), e* and (:. Proof of Theorem 1 is given in
[ 2).
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: Theorem_1:_ Global Stability S
-

: For the system (Sc) sssume that: o
na (A1) The elements of G(p) are strictly proper and exponentially f%

stable (all poles strictly inside the left balf plane) K

(A2) H(p) is strictly positive real (SPR), i.e., the elements of

’. R(p) are strictly proper, exponentially stable, and Re [H(juw)]

is positive for all o ¢ [0,%).

(i) Suppose that the adaptation gain is constant, i.e.,
= = ’
A({t. wt) Aowt. Ao Ao >0 (1)

' iti % ] s & = & -
o Under these conditions, if e®, é* ¢ sz\ LQ (= L > 0), and -

e, E* ¢ L: then:

. n . n n .
(i-a) nel_, #, ne L2 AL, and ® -> 0 at the rate e; -> 0.

L . Cue -
(i-b) e, é ¢ sz\ L. and e, — e} > 0 exp.

(i-¢) v ¢ sz\ L. VeL_, and ve ~» 0.
(i-4) &, Eeld, £ -2°, £ -¢%¢ L, N L, and

ﬁ‘ - C: -> 0 exp.

(ii) Suppose that (t is persistently exciting (4], i.e., 3 constants a.

‘ “2' a, > 0 such that
- s +a
3 +
o, I_ < j b at <o, I, VaeR (2)
s
; (ii-a) Result (i) holds, and in addition, "t' 't => 0 exp.
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(ii-b) If the elements of e®, ¢¢, (¢, and {* are all in L_,

then the elements of =, #, n, e, é, v, v, t, and ¢

are all in L _.
(iii) Suppose that the adaptation gain is gretarded, [5]), i.e.,

A w . |; I ¢ e, ¢ ) max [n*l|
ot 1 -

A(Ct. mt) = (3)

A 2A A
Ajle, - (1 lntllc) ) l"t' > ¢

(iii-a) Result (i) holds
(iii~-b) Result (ii-b) holds.

Remarks

The mejor difficulties in applying Theorem 1 are that, in the first
place, BH(p) ¢ SPR (condition (A2)) is an unlikely event in actual systems,
due to the effect of namodeled dynamics [6,7). Secondly, the conditions on
e* as given in (i) are also unlikely, namely e: -> 0. This condition
rules out the presence of unmeasurable bounded disturbances. Thus, the con-
ditions on c; in (ii-b) remain the only realistic case insofar as the
tuned signals are concerned. But, this raises another problem: ensuring
that either {t is persistently exciting (2) or that the adaptation gain is
retarded (3). Notwithstanding the difficulty with the SPR condition on
H(p), there are specific problems related to (2) and (3). For example:

Persistent Excitation (PE): With bounded disturbances (conditions (ii-b))
it is not known how to guarantee that tt ¢ PE. Recall that (t is gener-
sted jinside the adaptive loop, and thus, can only be controlled from the
input, i.e., from either e: or, more likely, from (:. Since we do not
know G(p) and H(p) it is mnot possible to conclude beforehand if tt e PE
even if {: ¢ PE. In the special (unrealistic) case of no unmodeled
dynamics and no bounded disturbances, e: = 0, (ii-a) holds and (‘t s PE
=) ‘t s PE. Even though this latter situation is easily ruled out, it cerx-
tainly makes semse that {‘t ¢ PE implies a ‘local’ result. That is, with

certain suvitable restrictions on signal] size and so forth, the system is
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robust, These arguments were formalized to some extent in [3) and will be

slightly extended here.

Retarded Update: 1In [S] it is suggested that the update algorithm be
retarded as given by (3). Likewise, in [8), a slow or ’'leaky’ integrator is
added. Although both these schemes {(as well as similar ones) do give
B.1.B.0. results, they both require additional information abut the plant,
e.g., as in (3) an upper bound on [n*]l. These results can also be con-

sidered as ‘'local’ results.

Slow Varistions: Together with a retarded update, another mechanism for en-

suring B.I.B.O. stability is to slow the variations in tt (see [3)). The

idea follows by examining the simple constant gain retarded algorithm,
(a > o)

= -Aoit H(p){{nt + Aottet' -an,
If tt is constant then exponential stability can be assured by direct LTI
techniques, Thus, if (t varies slowly enough with respect to the
dynamics of H(p) it is reasonable to expect a similar result., VWe will ex-
amine this more closely. However, control of (t introduces the same
difficulties as in requiring {t e PE, i.e,, only 'local’ results can be

obtained.

B. Local Analysis

The system (Sc) can be transformed to a more useful form for local

analysis:

x=x -3 (Sc)
;m. = F f(x)
where:
63
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3 = (n, e, f) = (n-n*, e-e%, -1*)
) . £(x) := (¥'n, Te)

The system (§c) is obtained from (Sc) by linearization of (Sc) about

e:. {:, and n®, resulting in the linearized perturbation response xL.
The remsining noplincar terms 1 Are contained in f(x) where F is 8
time-varying linear operator. The characteristics of F, 8as well as those
of ;L' depend on the adaptation gain and the behavior of the tuned sig-
nals, e: and {: (see [3)).

Consider the constant gain algorithm (1) with a retarded update. Fig.

2 depicts the resulting system (§c) where:

. _ § 0, with (3)

L := pta Ao' - { 0, otherwise

M := E® H(p) &*' + e*G(p)te’ (4)

N := &* H(p) + e*G(p) =

e

Thus, Fig. 2 reveals that ;L is the response to B = (t%e*, 0, 0)
. g —~ . o= L and ~' .
with n # 0, whereas xg is the response to B (OL te, {'n) with

= 0. Clearly, boundedness of the linearized response X and stability

, ,..
‘ s
YR

of the operator F require stability of the map 1q, LS into n, indicated
in Fig. 2 by K(no). It is shown in [3] that stability of K(uo):n I-> n en- g

sures the existence of conditions for local stability of the adaptive system

(s,)) or (S). 3
Of particular interest is the degree to which it is possible to main- f:.?
tain stability despite arbitrary dynamics H(p) and G(p), i.e., '

robustness to model error, Primary consideration is given to unmodeled

dynamics in H(p). Let, =
H(p) := H(p) + Ay (p) ()

where H demote the mominal dynamics obtained under ideal conditions,
N
e
which is independent of n®. All errors will be lumped into A". The

. 8

= 5n¢; consequently, we may consider H to be a fized transfer function
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desired result of the local analysis is to obtain a quantitative bound on

the worst case model error for which stability of (§c) is guarsnteed. We

will do this by analyzing the stability robustness properties of the map

K(no). thus, the results obtained will only verify that locasl conditions

exist.

B.1 Local Stability by Persistent Excitation

Assume that

{: e PE
(6)
ﬁ(p) ¢ SPR
Under these conditions, it follows from [4]) that the system
. = - .= "
i, §: H(p) t: x, (7)

is expomentially stable, i.e., there exists constants m, A > 0 such that

-at
lxtl {me |xo| (8)

The following result gives a coarse bound on the model error AH'

Theorem 2
The system K(uo) in Fig. 2 is L_-stable if:

A/m > o := llevll_llgell_ v (& (9)
and
1. (8g) < (A/m - o) /11Eel12 (10)

Proof: Follows directly from small gain theory (see e.g. [9]); details
in [3].
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Remasks: Although sharper bounds can be obtained [10], the significance of
Theorem 2 is that H(p) need not be SPR if {: e PE. The conditions of
Theorem 2 can be determined experimentally by simulating K(ﬁo) for a
variety of n_ ¢ Rn, pE L:. and (: ¢e PE. This procedure can only yield

o
an estimate,

B.2 Loca) Stability by Slow Variations with Retarded Update

In this case we will assume that C: is not PE, but varies slowly,
in a defined way, in relation to the known dynamics of H(p). Let (:
denote {: frozen at time t = tv, Let Kt(p) denote the linear time-

invariant operator givem by,

i (11)

(]

xt(p) [In + L(p)Mt(p)]

where

Mt(p) (34 H(p) t:' (12)

Let Rt denote the linear time-varying operator
Rt := (:B(P)C:' + e:G(p)t:' - Ht(p) (13)

The operator it(p) is simply l(ﬂo) with M = it(p). i.e., {: fizxed at
{:. Thus, Rt represents the effect of how far (z is from other values
{: under the dynamics of H(p) and G(p).

Suppose that lt(p) is exponentially stable, i.e., there exists con-

stants m, A > 0O such that,

_ toa(t-s) .
|(lt(P’“)t' (m S e lllldl, v L [0,t], VYt s R (14)
o

The following result is snalogous to Theorem 2.

Jheorep 3:
The system K(n ) 4s L_-stable if:
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Ao > o = Hleoll lIel] 7.(6)

e . t
e X
L T. .M. _Y_>_"_"

+ sup y (RoHEe ~Lohigs’) (18)
20
and
Y. (8) < (/m - o) /11gs112 (16) ?:Q
Proof: Follows directly from small gain theory; details in [3),[10]). §'§

Remarks: As in Theorem 2, the conditions here for local stability do mot

depend on B ¢ SPR, and in this case do not depend on {: e PE. Thus,

e R ALl us

Theorem 3 is weaker than Theorem 2, The key is to establish (14), i.e., ex- L
ponential stability of it(p). Note that with H ¢ SPR, and L(p) given by B
| (4) with a > 0, (14) is established by passivity arguments, Tighter bounds
{' on the norm operations can be obtained [10]. Also, the norms themselves can

be estimated by simulating candidate actual systems (Fig. 2).
2. Discrete-Time Case

A. Globsl Analysis
The discrete—time version of sc is somewhat different, due to the in- —

herent system delay k ) 1. The following discrete-time nonlinear system is

representative of most discrete—time adaptive systems:

- e -1 _ -1
€, =t ~Bila vy —B(a v, =

-1 -1
8¢ = 8% ~ 6(a vy o~ 6la v,

ny=m_g A((t. ”t)' w, = {‘et (sd.k)

with

A o ae e
- 1,0 0" S¢Mea1r Vo, T ST
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The signal and operator dimcnsions are the same as those defined in (Sc).

with q--1 the backward shift operator (q_lx)t 4 In genersl, with a

x »
t-1
unit delay (k = 1), (Sd) collapses to the form of (Sc). Specifically,

the unit delay adaptive system is:

-1
= . - .= ’
L e H(q )vt. v (t"t—l
g, =¢%¢ - G(q_l)v (s, .)
t t t d,l N
L P + A({t.wt). w, = {tet r

Details on S cap be foumd in

In this paper we will only examine S d.k
»

[10].

d,1°

A.1.Adaptation Algorithms
It is an understatement to say that the choice of discrete-time algo-

rithms is overwhelming. However, following [11]),([12] they more or less

belong to the following almost gemeric types:

Projection

1

- -4
AG L0 = (14 l;tlz) o, (P) o

Recursive least Squares

s ARyowp) = Spw,
(RLS)
-1

-1 ,
St = St_1 + ttC{ ’ So = So >0

Y Ty v v v

chast o atio

ARy,0) = 80,

(8A)

1
. 1
' -1 _ 11 2 :

OO WoaPRE S 1 Y0 PR A .

W W W w v w w W
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Avasilable stability results have dealt almost exclusively with (sd.k)
where, in the deterministic case, e: = 0, with either Hl(q-l) =1 (or
positive constant) and Hz(q—l) = 0, or vice versa, e.g., [11). (The
stochastic version assumes c: has zexro mesn with bounded variance, e.g.,
[12).) The following theorem extends the deterministic results to the case
where e® ¢ 92. Thus, e: approaches zero asymptotically, but is not identi-

cal to zero. Proof of theorem 2 is in {10).

Theorem_4: Global Stability

For the system (Sd 1) assume that:

(Al) The elements of G(q-l) are proper and exponentially stable (all

poles strictly inside the unit disc)

(A2) B(q-l) is proper, exponentially stable, and for some constant
6§ >0,

I B(e )y -11 <8, vlgl =1 (17)

Under these conditions, if e® eﬂz (= et-) 0) and I* ¢ 1: then using
adaptation algorithm (P), (RLS), or (SA) results in e, v ¢ x 2 and §, n c!:
provided that

6§ <1 (18)

Remarks

(1) Theorem 4 offers no more than part (i) of Theorem 1 for
coptinnous—time systems, in that it is not possible to insure an arbitrarily
large model error. The bound (18) of 8§ < 1 is as unrealistic as the re-
quirement that H(p) s SPR in Theorem 1 ( in fact, H(p) & SPR implies that &
< 1; see [2])). Similar zestrictive results for discrete-time adaptive sys-

tems bave been reported in [13) and [14].
(2) It can be shown [10) that Theorem 2 is valid if, in (A2), H is

either an LTI operator in the sector:

I m(qY) -dicgh) 1 g6, wigl =1
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where (19)

= -1

H(q 7)) € SPK

or if H - ﬁ(q-l) is 8 slope-restricted memoryless nomlinearity, i.e.,

_ =, -1
P avy, - g v b es v | (20)

(3) VWith arbitrary sector conditions on H, Theorem 2 holds for & (1
if the adaptation gain is modified, e.g.,

-1/2

_ _ 2
AG . o) =mo, = =@+ 11310 (21)

tt’ t

Other modifications like this can be constructed, provided m satisfies cer-

tain conditions, e.g., if m, is a positive nonincreasing function, then

t
sector properties on H apply to the operator mtﬂmtl. The required

properties of m, relate to the noncausal multiplier theory described in [9].

Picking the rig;t multiplier - which is only needed in the proof of
stability — is an artform akin to selecting a suitable Lyapunov function for
a nonlinear system. The multiplier requirements do, however, motivate a
myriad of modifications to adaptation gains (as proposed im (21)), for which
multiplier selection is more easily facilitated, see e.g. [14]). It is un-
clear at this time whether these modifications cam acheive practical sector

conditions on H for global stability, i.e., where & >> 1.

B, Local Analysis

Stability results dependent on persistent excitation or retarded update
have a more ’'local’ character than their discontinuous-time counterparts,
and thus, have been left out of the global amalysis. As remarked before
after Theorem 1, these are the known means to insure .n-;stnbil!ty. which we
have argued is the case most related to the actuval system enviromment.

The local stability analysis for contipuous~—time systems can be
developed analogously for tbe discrete-time case, with only minor
modifications. Thus, Theorems 2-3 have their discrete—time couvnterparts.
One major difference, however, is that the nonlinmear term in (gc, is more

complicated due to the complexity of the adaptation gain algorithms, e.3.,
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ROBUST ADAPTIVE CONTROL: CONDITIONS FOR GLOBAL STABILITY

by
Robert L. Kosut Benjamin Friedlander
Integrated Systems, Inc. Systems Control Technology,Inc.
151 University Ave 1801 Page Mill Road
Palo Alto, CA 94301 Palo Alto, CA 94304
ABSTRACT

An input-output approach is presented for analyzing the global stability
and robustness properties of adaptive controllers to unmodeled dynamics. The
concept of a tuned system is introduced, i.e., the control system that could

be obtained if the plant were known. Comparing the adaptive system with the
tuned system results in the development of a generic adaptive error system.
Passivity theory is used to derive conditions which guarantee global stability
of the error system associated with the adaptive controller, and ensure
boundedness of the adaptive gains. Specific bounds are presented for certain
significant signals in the control systems. Limitations of these global
results are discussed, particularly the requirement that a certain operator be
strictly positive real (SPR) -- a condition that is unlikely to hold due to
unmodeled dynamics.
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1. INTRODUCTION
1.1 Background

The analysis and design of adaptive control systems has been the subject
of extensive research in the past two decades [1]-[10]. Adaptive techniques
provide a way of handling plant uncertainty by adjusting the cont.oller
parameters on-line to optimize system performance. An alternztive method for
handling uncertainty is to use a fixed structure controller designed to
provide acceptable performance for a specified range of plant behavior. In
principle, adaptive controllers can provide improved performance compared to
fixed robust controllers, since they are tuned to the uncertain plant.
However, adaptive controllers sometimes exhibit undesirable behavior during
the tuning or adaptation process. For example, unmodeled dynamics can cause a
rapid deterioration in performance and even instability [11],[12]. This
problem is not resolved by increasing the order or complexity of the model.
Since the model of any dynamic system, by definition, is not the actual
system, it can therefore be argued that unmodeled dynamics are always present,
ad infinitum,

The main reason for these difficulties with adaptive controllers seems to
be that robustness to unmodeled dynamics was not considered as a design
criterion in the development of the adaptive control algorithm. The design
objective is global stability of the closed-loop system, e.g., [7], (9] and
various assumptions on the structure of the plant are required to achieve that
objective. In particular, it is necessary to assume that the plant is linear
and time invariant (LTI), that the relative degree of the transfer function is
known as well as the sign of the high freaquency gain. Such requirements are
not practical since real plants are often nonlinear and time-varying and can
be accurately represented only by high order (sometimes infinite order [13])
complicated models.

The need for robustness to plant uncertainty is not unique to adaptive
control. The problem of robustness is ubfquitous in control theory and has
been studied in the context of fixed (nonadaptive) control [14]-[17]). These
studies rely on the input/output properties of systems, e.g., [18],[19]. The
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predominant reason to examine robustness issues in this way is that the

characteritics of unmodeled dynamics, such as uncertain model order, are
easily represented. Lyapunov theory, on the other hand, is not well suited
for this type of uncertainty. Typically, plant uncertainty 1s characterized
by assuming that the plant belongs to a well defined set. For example, a set
description of an uncertain LTI plant is to define a "ball" in the frequency
domain. The center of the ball is the nominal plant model, and the radius
defines the model error. This set model description is one type of a more
general set description, referred to as a conic-sector [15]. The uncertainty
in the plant induces an uncertainty in the input/output map of the closed-loop
system which can, again be characterized by a conic sector. Performance
requirements for the control system can be translated into statements on the
conic sector which bounds the closed-loop systems, making it possible to check
whether a given design meets specifications, and providing guidelines for
robust controller design.

In this paper we use the input/output approach to analyze the global
stability and robustness properties of continuous-time adaptive controilers
with respect to unmodeled dynamics (although we consider only continuous-time
algorithms, the input-output formalism can be readily extended to the
discrete-time case). By global we mean that no specific magnitude constraint
(other than boundedness) is placed on any of the external inputs or initial
conditons. We develop an adaptive error system of a general form, by
comparing the actual adaptive system with a tuned system, i.e., the control
system that could be obtained if the plant were known. This error system is
similar to the type used in [7],(8] where the tuned system error output is
zero, due to the assumption of perfect modeling. By relaxing this assumption
we show that the non-zero outputs of the error system are the inputs to a
nonlinear feedback error system consisting of the adaptive algorithm and two
feedback (interconnection) operators,denoted by Hev and sz .

An important consequence of this structure is that the existence of
solutions (e.g., tuned system performance) is separated from the stabiity
analysis (e.g., stability of the nonlinear error system). In general, the
adaptation law {s passive; consequently, if Hgy 1s strictly positive real
(SPR), then application of passivity theory [19]-[21], provides global
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Lz-stab11ity of the map from the tuned system output to the actual adaptive
system output, even though the adaptive parameters may grow beyond all
bounds. We provide other conditions (e.g., oy stable) to insure the

Lw boundedness of the adaptive gains. Similar results are developed to
insure Lﬁ-stab111ty of the error system by using an exponentially weighted

passivity theory [19]. These results are summarized in Theorems 1A and 18.

As a by product of the input/output view we also obtain specific bounds
on the L2 and L_ norms of significant signals in the adaptive system. The
results are summarized in Corollary 1.

The results in Theorem 1 and Corollary 1 are not essentially new (see
e.g., [7],[8)), although they do provide some extentions to previous
results. The main contribution, however, is the fact that all the results can
be obtained from a generic error system and from the application of nonlinear
stablity theorems based on input-output properties. As a consequence of this
approach, it is to be expected that conditions for robustness will arise in a
natural way. Such robustness results are obtained, but unfortunately,they
have a limited practical use. The main limitation is that the global theory
(Theorem 1) requires that Hev ¢ SPR , which in turn places an upper bound on
the size of the unmodeled dynamics in the plant. The details are contained in
Lemmas 4.1 and 5.2. This bound is quite restrictive and is easily violated by
even the most benign model errors, thus, verifying the results obtained in
{111, [12]. To over come this limitation, we construct an SPR compensator,
based on the scheme proposed in [22] in the context of robust (non-adaptive)
control. Although in the adaptive case the supporing arguments are heuristic,
an example simulation shows a positive result.

The input/output analysis presented here provides a generic framework
within which it is possible to analyze the robustness of adaptive robust
controllers. We believe that this framework can be used to develop practical
adaptive control algorithms that can be more readily applied to real systems,
than the class of algorithms currently in use.

Since this paper merges ideas from several areas, it is necessary to
introduce a number of definitions and concepts.
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Since this paper merges ideas from several areas, it {s necessary to
o introduce a number of definitions and concepts. e
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2. SOME PRELIMINARIES
2.1 Notation

The input/output formulation of multivariable systems is the principal
view taken throughout this paper and the notation and terminology used is

e d
s N

standard (see e.g. [18],[19]). The input and output signals are assumed to be

imbedded in either the normed function space

LM = x 2 [0,0) & R ] Ixi], < =) (2.1a)
p p
or its extention
n n
Lpe = {x 1 [0,T) o R lixllyp <y T <) (2.1b)

The respective norms ||.||p and ||.||Tp are defined as follows:

Hixil, = vim x| (2.2a)
p Tow Tp
with

.
(] Ix()Pat)/P | p e [1,0)
0

Hxllgp = (2.2b)
sup __ Ix(t)], p==
te (0,1
where |.| is the Euclidean norm on R". Hence, L;e ts an inner product
space, with {inner product <x,y>r of elements x, y ¢ Lge defined by

T

<X, y>q = L x(t)'y(t)dt (2.2)

and so llxlsz = (<x,x>T)1/2 . 1f T+ = then " §s an inner-product space

2
with inner product <x,y> = lim<x,y>
Tem

T L]
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2.2 Stability

Systems considered in this paper are described by input/output equations
of the form y = Gu where G:L';e + L"e is a causal map from u into y, also
denoted y + y . The system G is said to be Lp-stab1e (or simply stable) if G
maps u e L™ into Ye L" and if there exists finite constants k and b such
that ||GuY|Tp < k ||u||Tp +b, for a11 T > 0 and all “ELme The smallest
k that can be found is referred to as the Lp-gain (or simply qain) of G,

denoted yp(G) .

Because we often encounter LTI systems it is convenient to introduce the
following notation. Let R{s) and Ro(s) denote the proper and strictly proper
rational functions, respectively. Let S and So denote functions in R(s) and

Ro(s) , respectively, whose poles all have negative real parts. Thus,
S and So are the stable, lumped, LTI systems. Denote multivariable systems

with transfer function matrices, by R(s)"xm, snxm , etc. For example,
G e S:xm means that all elements of G belong to So , and so on.

If Ge S then the following L,-gains are obtained,

vy(6) < v _(6) = ] 3T6(t)ldt (2.4)
® 0

YZ(G) = sup olG(jw)] (2.5)
weR

where G(A) denotes the maximum singular value of the matrix A, defined as the
positive square root of the maximum eigenvalue of A*A, where * is the
conjugate transpose of A. In (2.4), (2.5) G is the operator, G(juw) the
transfer function matrix, and G(t) s the impulse response matrix.

2.3 Passivity

The fcllowing definitions follow those in [19],[21]. Let
G:LTe + LTe and let y, p be constants with u > 0. Then, Vuce Lge :

81




-

v
.

IR > LA R s
’ B . D
o s et

y -
-
Y
.
,
A .

Lo

M R A W R A QL ey e pmmrm—— - oA pi = e s~

G is passive if,

<u, 6w,>p (2.6)

!

G is input strictly passive if,

<u, Guorap 4w, (2.7a)

G is output strictly passive if,

< u, Gu >T > p + uIGUITz (2.7b)

(. and p are not the same throughout). When G ¢ S™™ satisfies (2.7), G is
said to be strictly positive real (SPR), denoted G ¢ sPR™ . Because SPR
systems play a crucial role in the proof of stability of adaptive systems, we

introduce the following subsets:

mxm

SPRT = {6 ¢ S™™|a(F [6(dw) + B(-ju)'] - u1) > O, ¥ueR} (2.82)

SPRD = {G & SP™|a(3 [6(Ju) + G(-Ju)'] - u 6(-ju)'G(Jw)) > O, ¥ueR} (2.80)

where A(A) denotes the smallest eigenvalue of A. Thus, whenever G ¢ ghxm .
conditions (2.7) can be tested in the frequency domain. Moreover, SPR: and
SPRT , respectively, separate the strictly proper SPR functions from the
proper, but not strictly proper, SPR functions. In the scalar case, the
frequency domain conditions simplify because A[G(Juw) + G(-ju)']=
2 Re[G(jw)].

Certain unstable systems in R(s)™" can be passive by virtue of (2.6).

In particular, GeR(s)mxm is passive if G(s) is positive real. The transfer
function matrix G(s) s positive real 1f: (1) it has no poles in Re(s) > O,
(11) poles on the Jw axis are simple with a non-negative residue, and (ii1)
for any w ¢ R not a pole of G(Juw) + G(-Ju)' > .
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2.4 Model Error

The cornerstone of robust control design is a quantifiable bound on the
error between the model used for control design and the actual plant to be
controlled. In the adaptive control case considered here the model is a
parametric model, where the parameters are not known exactly. The structure
of the parametric model can be obtained analytically from physical laws, but
this invariably results in a complicated model. Often a simple structure is

o selected because it is more convenient for analysis and synthesis.

Let P denote the plant to be controlled. In the broadest sense P is a
relation in Lxe X L?e , 1.e., the set of all péssible ordered pairs
(u,y)gLTe x Liq of fnputs y ¢ LTe and outputs yeLTe that could be generated
w by the plant [18]. The uncertainty in the plant is denoted by ({(u,y) ¢ P .
Let Pa:L';e - L:e denote a parametric model of the plant P with
parameters 4 ¢ Rk . The parameters can be selected so as to minimize any

discrepancies between the model and the plant, i.e.,

1"fk'y'Pa"'Tp = 1y-Paurgg (2.9)
aeR
!! We will refer to a*enk as the tuned model parameters and to P =P, as the
- a

. *
| tuned parametric model of the plant. In general, P, is dependent on the
' input/output sequence.

- Most of the previous work on adaptive control deals with the case where
‘ for every (u,y) ¢ P there exists a tuned parametric model P+, such that
P.=P. In this paper we consider the presence of unmodeled dynamics, thus,
the uncertain plant P cannot be perfectly modeled by any parametric model
Pq . Since we will deal exclusively with LTI plants P ¢ R(s)™™ | 1t is
convenient to describe this model error in the frequency-domain. Let
Bs(r) denote a "ball” in S of radius r, defined by

s Bg(r) := {6 ¢ S™"| 3[6(Jw)] ¢ ru), w € R} (2.10)
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Let the plant to be controlled be described by

[

1

P=(1+a)P, (2.11a)

nxm

where P ¢ R(s)™™ is the plant, P, ¢ R(s) is the tuned parametric model,

and 4 ¢ S"™" denotes the unmodeled dynamics. Further, the only knowledge

il available about A is that it is bounded such that

il s e B(s) . (2.11b)

where () is known for all frequencies. In other words, while the operator

A is not precisely known, we do know a bound on its effect. This model ,

| - description (2.2) is used throughout the paper to precisely define the plant ;;
{ to be controlled in an adaptive system. Following Doyle and Stein [16] we

o will refer to (2.11b) as an unstructred uncertainty. Note that although a is

- stable, P and P» need not be stable. Hence, the parametric model is k
" implicitly required to capture all unstable poles of the plant. Although this S
is not severly restrictive - at least on practical grounds - nonetheless, it

can be eliminated by definng model error as (stable) deviations in (stable) o
coprime factors of the plant [23]; As the subsequent analysis is not
substantially effected by this choice, we will remain with (2.11) for purposes
of illustration. -

.
’
E

’

2.5 Persistent Excitation

From [31], a regulated function F(.) = R, » R™™ {5 persistently -
exciting, denoted F ¢ PE , if there exists finite positive constants , ‘
ays G and aj such that

s*a3
e a, 1> [ F(UF()'dt>a T, ¥seR (2.12)
. s
The usefulness of a persistently exciting signal is in establishing the
exponential stability of the following differential equation which arises in
o many adaptive and identification schemes, f.e., -4

£ ¥y
AN
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X = -BFHF'x + w , x(0) ¢ R" (2.13) y
E It 1s shown in [31) that if B¢ R™™ B=8'>0, He spnz' or SPRT. and :-.1
F e PE, then (w, x(0) | x {s exponentially stable, i.e., 3 m, A > 0 such :
that
] -t t o alter)
- Ix(t)| < me™" |x(0)| + [ me Iw(<)ldr - (2.14)
' 0
We will utilize this latter result in section IV in our proof of stablity of
the adaptive system.
|8
B °
2
’ .
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3. ADAPTIVE ERROR MODEL
In this section we develop a generic adaptive error model which will be
used in the subsequent analysis. This requires defining the notions of robust
control and tuned control.

Robust and Tuned Control

Consider, for example, the model reference adaptive control (MRAC)
depicted in Figure 3.1, consisting of the uncertain plant P, a reference model
H., and an adaptive controller C(a) , where 5 is the adaptive gain vector, r
is a reference input, d is a disturbance process, and n is sensor noise.
Denote by H(g) the closed-loop system relating the external inputs w = (r',
d', n')' to the output error e, as depicted in Figure 3.2.. Also, let we W
denote the admissable cliass of input signals.

The objective of the adaptive controller is twofold: (1) adjust o to a
constant g, ¢ R¥ such that H(e,) has desireable properties; and (2) during
adaptation, as 5 is adjusted, the error js well behaved. In the usual
formulations [7] only (1) is considered and further it is assumed that there
exists a matched gain, denoted by ¥ ¢ Rk , such that

H(g) = 0 (3.1)

The presence of uncertain unmodeled dynamics in the plant eliminate the chance
of satisfying the matching condition. Thus, it is more appropriate to define
a tuned gain, denoted by o, ¢ Rk , corresponding to each (u,y,w) ¢ P x W ,
such that

Hle,)w < H(ew , ¥ o ¢ RK (3.2)

The error signal e, := H(e,)w is referred to as the tuned error. Note that
each (u,y,w) ¢ P x W engenders a possibly different o, . Also, it is
important to distinguish the tuned gain o, , from the robust gain °o € Rk .
where

sup H(eo)w < sup Hlelw, V¥ oce Rk (3.3)
P xW P xM

2y

-¥‘-
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ADAPTIVE LAW:

Figure 3.1 A Model Reference Adaptive Controller
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The error signal e° e H(eo)w {s referred to as the robust error. It follows
from these definitions that the tuned error {s always smaller in norm than the
robust error, thus ¥ we W ,

e, = Hle,dw < e = Ho Jw , (3.4)
The tuned controller is, unfortunately, unrealizable since it requires prior
knowledge of the actual system H(s) (or equivalently, the plant P) and the
input w. A practical adaptive controller is likely to have a larger error
norm.

Structure of the Adaptive Control

In summary, we consider the multivariable adaptive system, shown in
Figure 3.2, and described by

e = Hle)w . (3;5)

where e(t) ¢ R™ is the error signal to be controlled, w(t) ¢ RY is the
external input restricted to some set W, and g(t) ¢ Rk is the adaptive

gain. The class of adaptive controllers considered here are such that the
adaptive gains multiply elements of internal signals z(t) ¢ Rk , referred to
as the regressor, to produce the adaptive control siagnals,

fi = 8; z; , 1e1,m (3.6)

where Si and zy are ki-dimensiona1 subsets of the elements in 8 and z,
respectively. Thus,

m
k= ¢ k1 (3.7)
i=1

Define the adaptive gain error,

o(t) := a(t) - o, (3.8)

where g, ¢ Rk fs the tuned gain (3.4). Also, define the adaptive control
error sfignals,
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i=1, ..., m (3.9)
An equivalent expression is,
v=1' (3.10a)
where the time-varying matrix Z is defined by
Z = block diaglzy, zp, . . ., 2Zq) (3.10b)

To describe the relations among the signals e, z, v, and w we introduce
the interconnection system HI : {(w,v ) + (e,z) , as shown in Figure 3.3. In

particular, let HI € R(s)(m+k)X(m+q) , and where Hy is defined by,
e w H ew -H ev w
= HI = (3.11)
z v H -H v
2w 2v

In effect, this structure serves to isolate the adaptive control error v, from
the rest of the system. When the adpative control is tuned, 9 = 0 and v = 0;
consequently, the tuned error signal (3.4) is,

€,

= Hlo, Jw = LI (3.12)
We can also define a tuned regressor signal,
2z, = H W ‘ (3.13)

In general, all the subsystems in H; are dependent on the tuned gains o, .

The interconnection system can also be written as,
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e=e, - HV (3.14a)

zZ = Z* - sz v (3.14b)
with v given by (3.10). To complete the error model requires describing the
adaptative algorithm, i.e., the means by which ol(t) is qenerated. We will
consider two typical algorithms. A constant gain (gradient) algorithm [7]:

=rle (3.15)

Dy

where T ¢ RKXk, r=r'>0, and a similar but nonlinear gain algorithm:

6 = r(Ze - pl8)e) (3.16a)

where , : R¥ . R, s a retardation function, whose purpose is to prevent
3 from growing too quickly in certain situations. Although many functions
will suffice we will select the one proposed in [24], namely:

(188/c - 1)2, 181 > ¢ := maxie,
ole) := (3.16b)
0 181 < €

The complete adaptive error system, is shown in Figure 3.4. Note that
the error system is composed of two subsystems: a l{inear subsystem zL and a

non-1inear subsystem zN .
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4. CONDITIONS FOR GLOBAL STABILITY

The theorems stated below give conditions for which the adaptive error
system (Fig. 3.4) is guaranteed to have certain stability and performance
properties. Proofs are given in Appendix A. Heuristically, however, the
basis for the proofs is application of the Passivity Theorem ([19], pg. 182).
It turns out that the map e » v is passive. Thus, if H_ is SPR™ , then
the map e, + (e,v) is Lp-stable even though 2 and/or g can grow without
bounds. Further restrictions, provided below, cause o and z to be bounded.
(We use the notation “x + O (exp.)" to mean that x{t) » O (exponentially) as

t+sew,)

Theorem A: Global Stability

e T

Ty
B
oo

. .

For the adaptive error system shown in Figure 3.4, assume that:

(A1) The system is well-posed in the sense that all
inputs w ¢ W produce signals e.v,z, 6 , and

g in L-e .
(4.1a)
kxm
(A2) sz € S° (4.1b)
m
(A3) Mg, € SPRY (4.1c)
Under these conditions:
(1) If (e,, &) ¢ L'g OLT = e, —»0) and (2,, 2,) ¢ L: then with
algorithm (3.15) or (3.16):
by k . k k [
(1-a)  (e0)el_,0ecl,NL , and o 0. (4.a)
M~y M m |
(1-b) €€ LaNL, ¢cl_, and e-e, -» 0. (4.2b)
(i1-c) v;LgnL:'. :lel.:'.andv-vo . (4.2c)
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(i-d)  (z2,%) ¢ Li , (z-2,, 2-3.) ¢ L;ﬁL: , and z-z, —» 0 exp.
(4.2d)

(i-e) 1If, in addition, e, = O (matched) and 2z, ¢ PE then

(0, 6, e-e,, v, 2-2,) —» 0 exp.
(4.2e)

(1) If (ey, &,0cL™ and (z,, 2,) ¢ LY , then with algorithm (3.15):
(1i-a) z¢ LK (4.3)
(ii-b) With the addition of either algorithm (3.16) or 2z ¢ PE it follows
that the elements of o, 8, e, &, v, V, and Z are inL_ . .
(4.4)
Theorem 1B: Global Stability
Replace (A3) in Theorem 1 by
' m

(1)

If (e, &) e LpNLT (=> e, —=-0) , and (z,, 2,) ¢ LX then with
algorithm (3.15) or (3.16)

(1-a) (o, 8)e LK , & ¢ L3NLE , 50 (4.62)
(1-b)  eelyaNL] , ec L), e- e,p0 (4.6b) 3
(1-¢)  (v,V) ¢ Lﬁ' (4.6¢) i
KA K ]
(1-4) (2,2) ¢ LY, (2-2,, 2-2) c L3N LK, ]
lﬂd Z-Z*—'o . (4.6d) ~':
S
(1-e) 1If, in addition, e, = 0 (matched) and 2z.e PE , .4
then (o, v)—90 exp. (4.6e)
95 -!
Ei‘}
.




Sl At Bt i s A e st e G gt e - e e e e g el o I P P T
o

-

&

(i) If (e,, &) ¢ Lf and (z,, 2,) ¢ L: » then with algorithm (3.15): )

il

(i1-a) 2z ¢ L.': (4.7d) q

]

(1i-b) With the addition of either 2ePE or algorithm (3.16), the :
elements of ¢, §, e, &, v, v, and 2 are in L_.

(4.70) 1

Corollary 1: Performance Bounds

Suppose 2z, and e, satisfy the conditions in (i) of Theroems 1A or 18.
(1) Let H, ¢ SPR} , i.e., Ty, vy > 0 such that WueR ,

- 1 . - '

ol  (Ju)] < vy and IH, (Ju) + H  (~ju)'] > u I (4.8a)

Then, bounds on e, and |e|. can be obtained from:

2

te-ety < I (16w, + (1o + 2 0(0) r™la10))1/2)  (a.8b)

|e‘r'le|. < 8(0)* r~la(0) + 2ter, 0e-e,0,/y (4.8¢)
P (11)  Let H_ SPR'(')' , f.e.,3Jyu, q, k>0 such that ¥y, e R,
b
E Tl ey ld0) *Hy,(-3u)'] ou Hy (=Ju)* M, (u) (4.92)
9. 1 + ' 1 (4.9b)
::j?"" 'z{GXv(jw) Gev(-ju) ] >k m .
& Goyls) := (1 + as) H_ (s) (4.9¢)
. -
F" Then, bounds on 1e,1 and 101 can be obtained from:
- ‘ -
F-.. ..
. . 2 2 v=1 1 .
:g:: ter, < l;é{'e*’qe*' + (.e,+qe,|2 + & u8(0)'r "o0(0)) /2] (4.9d) |
b .
. " ta™ p i
E-: we'r 1el_ < o(0)'r l0(0) + é’le.*qe*lzlelz (4.9¢)
o -
L N
-
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Discussion

(1) Theorems 1A and 1B give conditions under which the adaptive error
system is globally stable. Essentially, conditions are imposed on the

interconnection subsystems in Hy - In particular, Hev ¢ SPR™ and

sz € ngm are direct requirements, whereas the restrictions on the tuned
signals e, and 2z, , indirectly impose requirements on Hew and sz . These
latter requirements are dependent on knowledge about w e W . For example, if
w is a constant, then the assumption that e, + 0 (Theorem 1A-i) requires
that the tuned feedback system is a Type-1 robust servomechanism, i.e., ‘the

transfer junction Hew(O) =0 for all (u,y) e P .

(2) Corollary 1 gives explicit bounds on signals in the error system.
These bounds can be used to evaluate the adaptive system design. Moreover,
the bounds allow a coarse determination as to the efficacy of adaptive control
vs. robust control. By comparing, for example, the adaptive error L PY from
(4.8) with the robust error e 1, from (1.5), it is possible to obtain a
quantifiable measure of performance degradation during adaptation.

(3) Although Theorems 1A and 1B are essentially the same, there are
slight difference worth noting. These differences arise because in 1A,
HeveSPRT==b Hev(s) is proper but not strictly proper, whereas in 1B,
HeveSPRg’=° Hev(S) is strictly proper. Thus, comparing part (i) in 1A and
18, we see that in 1B, v, ¥ ¢ L whereas in 1A, v is additonally in
Ly and v0 .

(4) The use of persistent excitation or gain retardation is seen in part
(1) of theorems 1A and 1B to provide the means to gquaranty bounded signals.
Other schemes based on signal normalizations or dead-zones can provide similar
results, e.g. [32),(33]. The effect of these conditions 1s to provide an

L_-stability which {s not present otherwise. The persistent excitation
condition actually supplies exponential stability, which {s stronger than

L_-stabiIity. as provided, for example, by the gain retardation (see proof in
Appendix A).

(5) The persistent excitation requirements in parts (i) and parts (i{)
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are different. 1In parts (i), z,ePE , whereas in parts (§i), 2zePE . The
. different assumptions arise because in parts (1) we enforce the matched I
: condition e,=0 . Hence, 2z,ePE => 2¢PE . This follows from (i-d) where -
z -z, + 0 expoentially. Also, with e =0, a bounded disturbance added to
. the reference can cause z ¢ PE without forcing, e, e L . In parts (ii),
} which is more realistic, we disallow the matched conditi;n, and hence,
' . €, € L“. Thus, 2 ¢ PE 1is the weakest assumption to make. However, since 2
:}f is inside the adaptive loop, it is very different to guarantee 2z ¢ PE by
"; injecting external signals. Note also {in both parts(ii)) that without
2 retardation or PE it is possible for the regressor to remain bounded even
though the adaptive parameters may grow unbounded. Similar results have been
reported elsewhere, e.g. [24].

Robustness to Unmodeled Dynamics -
Since the theorems impose requriements on the input/output properties of

the interconnection system, it follows that the effect of model error on these

properties determines the stability robustness of the adaptive system. For

: example, both theorems require that Hev € SPRm . Suppose, however, that

e Hev has the form,

.:- . Hev = (I + “ev’Hev (4-10) -,.".'
where ﬁev is the projection onto Hev of the plant uncertainy operator 4 ;

and ﬁ;v is the nominal transfer function when there is no uncertainty, i.e.,

s when 5 =0 . Thus, ﬁ;v is a function of the tuned parametric model P, and

- the tuned controller gains o, . (See Section V for more specific formulae,

e.g. (5.5).) -

Conditions to insure that H, e SPR, despite uncertainty in Hgy fs -
provided by the following: o

- Lemma 4.1: Let My, be given by (4.3). Then H,, c SPR, {f the following
= conditions hold:

(1) ﬁ;v c spaT (4.11a)

98




»op & ¢ ]

2 aee o sy

-~

(11) “ev‘ Bs(k) where ¥ o ¢ R , (4.11b)

Kla) < 3 A[Hg, (Ju) + Hg,(=Ju)' ] /o[y (Ju)] (4.11c)

Proof: Define ,(.): C™" « R by

p (A) = 3 a(aen))

where * denotes conjugate transpose. Then, using definition (2.8) with (4.10)
- (4.11) we obtain

u[H (30)] = u[H_ (o) + R (udH, (5]

> ulf_ (Ju)] - o(F,, (Ju)]a[H, (Ju)] > O .

m
Hnece, H e SPR, .

Comments

(1) 1In order to apply Lemma 4.1 it is necessary to have a detailed
description of how the plant uncertainty A propagates onto the
interconnection uncertainty “ev . This type of uncertainty propagaticn was
explored in depth by Safonov [25] and more sophisticated expressions then
(4.4b) are available to describe the uncertain operator Hev . Section 5
contains more detail on this {ssue.

(2) In the scalar case (4.11c) becomes

k{w) < Re[ﬁ;v(jm)]llﬁ;v(Jm)l
_ (4.12)
= cos 3 [H, (Jul]

Since i;v ¢ SPR" by assumption, k(w) {s always positive for w ¢ R ; but

because of the cosfne function, k(w) <1 . In Section 6 we show that this
limitation on the effect of model error §s easily violated by even the most
benign type of unmodeled dynamics in the plant. Methods which overcome this
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1imitation are discussed in Section 7. The requirement that k(w) ¢ 1 also

holds for any multivariable ﬁev € SPRm . To see this let Hév have the polar

decomposition,

xi

=GW =W G (4.13)

where (
S(H )
ev

» G, are Hermitian and Wg, is unitary. Since
E(Gz) = E(Gr) , it follows that

([ g

k{w) < ;ﬁNev(jw)] <1 (4.14)

In the case of scalar systems, the condition k(w) < 1 can be interpreted in
terms of a 1imitation on relative degree of Hev(s) . A necessary condition
for Hev e SPR is that the relative degree of Hev(s) does not exceed one
i.e., phase limited to $90°. Rohrs, et al. [12] show that this necessitates
precise knowledge of plant order, and hence, is not a feasible requirement in
the presence of an unstructured uncertainty (2.12), where the order is
unknown. In the multivariable case it is awkward to talk about relative
degree or phase, however, (4.14) expresses the same limitation.

(3) In several instances, e.qg., [9],[26],[27], it has been reported that

the SPR condition has been eliminated. In each case, however, it can he

verified that the operator Hev = positive constant , which is SPR. But,
these studies do not account for unmodeled dynamics, thus, in the notation of

(4.10), only H;v = positive constant ., Lemma 4.1 then provides the means to
evaluate the effect of ummodeled dynamic.
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5. APPLICATION TO MODEL REFERENCE ADAPTIVE CONTROL

Constider the model reference adaptive control (MRAC) system, shown in
Figure 5.1, consisting of: an uncertain scalar plant P ¢ Ro(s) ; @
reference model L S. ; and filters with F ¢ 53XI . The plant is

0
affected by a disturbance d and a reference command r. The system equations

are:

=-9'2z= —(aizl + aézz)

2z F u, z, = Fly-r)

1

Assume that the adaptive law is given by (3.15), thus,
A
e =rze

Let the plant uncertainty be described by(2.12), i.e.,

P-P4

A := PF€ BS‘G) (5.1g)

where P, ¢ Ro(s) is a tuned parametric model for P. Let the filter dynamics
be given by

1 s st-1
F(s) = (l-m s [TsT » *°» U?T) (5.1h)

where L(s) is a stable monfc polynomial of degree ¢ . Thus,
al(t). sz(t) e R* and so 8(t) ¢ RZ% ., Using the definition of tuned gain
(3.2) we get,
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u=-98'z=-(g,%0)'z

= -(e*lz1 + 9*222) , vi=e'z from (3.6)
*l
S phu ) -
Finally,
Aup/L
I_A—_/f("'y) - TT—-,L—V = Culr-y) - I—ﬁ-v (5.2)
where A,

and Ax, are polynomials, each of degree g-1 , whose coefficients are

the elements of the tuned gains 6. and 6.; . respectively; and C« denotes
the tuned controller. The tuned system ( 6=0 ) is shown in Figure 5.2.

In terms of the uncertain plant P, the adaptive error system (Fig. 3.4)
corresponding to this MRAC system, has tuned signals:

e, = (1 +pc,)7ld + [(14pC,) T, 0 ] (5.3a)
F(1+pC,)"1c, (r-d)

z, = (5.3b)
r(1+Pc,)‘1(d-r)

and interconnections:

Hyy = (1+PC*)'1P(1+A*1/L)'1 (5.3¢)

F1+pC, )" (10n, 1072
. (5.3d)

v -1 -1
F(14PC,) T IP(14A,, /L)

The error system can also be described so as to highlight the model error
A . The following definitions are convenient:

T, = (1+p,6,)°1P,C, =1 -5, (5.4a)
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)
-1 -1
B Ke := Hev|A=0 = (14P,C,) 7P, (148, /L) (5.4b) ‘
Thus, the error system (5.3) can be also be expressed as: ::
A
- e = Su(14aT) 7 d + (T, (148) (14aT )2 )r (5.5a) zi
. F 5,C.(1+aT,) 1 (r-q)
- z, = )5.5b) ]?
F S*(1+AT*)'1(d-r) ?u
Hy, K (144)(14aT,) "] (5.5¢) -
Y
F K P (144707t
, Hoy © (5.5d)
l' F K*(1+A)(1+AT*)-1
The result that follows in Lemma 5.1 gives conditions under which
Hey € SPR, and Hoy € S§IXI , despite model error; thus conditions (A1l)-(A3)
) of Theorems 1A and 2B are satisfied. Additional requirements are necessary to
establish the class of tuned signals ex and z+ as given by (5.5a) and (5.5b),
_ respectively. These requirements are discussed following Lemma 5.1.
=
- Lemma 5.1: For the adaptive system (5.3) or (5.5) Hyy € SPR_ and
[-; L ngxl 1f the following conditions are all satisfied:
[ - n-1 n-2
[ gls" "+ 8,8 S+ ...+ 1) gNu(s)
= (1) puls) = — i-x* n-1 "15';57‘ (5.6a) a.
p -' * o
N S +Gls + see + a e
[S n i
6—1
t (1) N,(s) is a stable monic polynomial (5.6b)
:
" (111) 9> 0 (5.6¢)

Kqy(s)
(1v) Ko(s) = EK;%ET"‘ SPR, where Ky(s) and Ky(s) are monic stable
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polynomials.

(5.6d)
(v) 2 = deg L(s) > n + deg Kl(s) -1 (5.6e)
(vi) A e Bs(s) is such that
e §(w) < 8lw) = nlw)[nlw) T4 (Ju)] + |S,,(Jc»)|]'l
-‘: ¥ w € R’
3 nlw) = cos ¥ [K, (Jju))
(5.6F)

Proof: See Appendix B,

Discussion

'v‘ "7'.1*

(1) Condition (i)-(v) of Lemma 5.1 are restatements of known results,
but normally they apply to the actual plant P, e.g. [7]. In Lemma 5.1,
_ however, these conditions apply to the parametric model Px -- not to the
i' actual plant. As such, they are easier to satisfy, since the parametric model
[ is somewhat arbitrary. This flexibility is penalized by an increase in model
error. For example, if the actual plant has a relative degree of 2, then
choosing a parametric model of relative degree 1 -- as required by condition
(1) -- incrases the high frequency model error.

(2) Condition (vi) imposes an upper bound ¥ on the model error
assocfated with the chosen parametric model. This condition simultaneously

insures that "ev € SPRO despite model error, and that the tuned system {s
stable (see proof in Appendix B).

(3) 1t is easily verified that T(w) < 1 , as was discussed following

Lemma 4.1. In fact, even the "optimally tight" bound (see [25] for details on
this calculation) given by,

-

1/2

¥ z-r}-[,,— [-11-T) + (114712 + an Re(kT/IK]) ] (5.7)

E
3

s
b -
b
-
%
p

is also restricted to be less than 1. This limitation severely restricts the ) ﬁ
type of admissable model error. This {fssue 1s pursued fn Section 6. . ﬁ
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(4) To gquarantee global stability using the adaptive law (5.1f),
property (1) of Theorem 1 requires that e, + 0 and 2z, 2, ¢ L2% for a1 r
and d. For example, let r and d be any bounded signals such tha;

r » constant and d » constant as t + « . Property (i) of Theorem 1 is
satisfied if:

§(0) = 0 (5.8a)
1,(0) = H (0) = 1 (5.8b)

Zero model error at DC (5.8a) is certainly to be expected from even the most
crude tuned parametric model.

(5) Let r be bounded such that r s constant as t + » , but let d be
just bounded, i.e., de L, - In this case it is not possible to guarantee
e, > 0 , but we can guarantee that e, ¢ L . To obtain global stability in
this case, requires the introduction of the.retardation term (3.16) into the
adaptive law (5.1f), see part (ii) of Theorems 1A or 1B,

(6) It is possible to obtain versions of Lemma 5.1 for adaptive systems
of different forms, e.g., indirect adaptive [5]). Also, the use of
"multipliers”, e.g. [4], can be accounted for as well. The multiplier
effectively makes use of the availability of 3 as a signal; and this allows
rel deg (Px) = 2 rather than 1 as required by condition (i) of Lemma 5.1.
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6. LIMITATIONS IMPOSED BY THE SPR CONDITION

The fact that the model error bound given in condition (vi) of Lemma 5.1
can not exceed one has unfortunate consequences.

Example 1

Consider a plant with transfer function,

_ ab
where Px is the parametirc model, with two unmodeled stable poles at -a and
-b. Suppose,also, that b is much greater than a, and that a is much greater
than the bandwidth of P,(s) . This situation seems benign -- and most likely
a certainty. Comparing (6.1) with (5.1g) gives,

6((0) = (d[ mz"’ (a+b)2 ]1/2 > 1 . L
(wi+a?)(2 +b?) ’ ‘

for all frequencies u »> (ab/Z)l/2 , thus, condition (vi) of Lemma 5.1 is
violated, and global stability cannot be guaranteed. The following example

illustrates this point. ~
Example 2 =
Consider the example MRAC system (Fig. 5.1) studied by Rohrs et al, [12], -
where: "
p(s) = L 229 5 )
s+ (s+15)2 + 4 ‘ﬁ

3

u s - Sly + 82 r 0

.o
. .
L S SNNNNS 2 b 4o -

e
£ 1 &
y Foa
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= ye, 81(0) = .65

T
<
b

e )

8, = -r e, 92(0) = 1.14

(R et

Let r = constant and d = 0. Thus, e, +» O exponentially when the tuned gains
are such that (5.8) 1s satisfied, i.e.,

20,
a2 i
Tol0) = gy = (0 =1

Even though (e*l. 6,2) exist to satisfy this, Hev(S) is not SPR, and so
global stability is not guaranteed. Simulation runs with r = .4 and r = 4.0
are shown in Figures 6.1 and 6.2, respectively. With the small input (Fig.
6.1) we see a stable response which tracks the reference very well. With the
large input (Fig. 6.2) the response is still stable, but large oscillations
are taking place. Larger inputs will eventually drive the system unstable,
e.g. [12].

In this example, if the tuned model {s taken to be P_(s) = 1/(s+l) then
it is easily verified that model error s(w) is greater than one at some

frequency.
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7. SPR COMPENSATION

In this section we heuristically develop a means to obtain global robust
adaptive control. Since the SPR condition is violated whenever model error
exceeds one, a natural scheme is to construct an SPR compensator which
alleivates the problems by "filtering" the plant output; thus, avoiding the
trouble. However, direct filtering does not change the size of model error.
For example, with the plant P = (145)P. , let y, denote the output of the
filtered plant, where

y, = Wy = Wd + (14a)WP u (7.1)
Thus, model error is uneffected. Even filtering Hev directly by W offers no
help, since the bound (4.4c) is still less than one, i.e.,

Hgy | < Re(W Fy,)/IW Ayl < 1 (7.2)

for any stable W. What we seek is an SPR compensator which only effects the
unmodeled dynamics, but leaves the paramtric model intact.

A compensation scheme, which offers some promise as an SPR compensator,
is that proposed in [22], as shown in Figure 7.1. To see the desired result
suppose that P = (1+A)Pm with 4 ¢ BS(G) . Then, the compensator f{s
equivalent to a plant which maps (u,d) into Y. where

yo =Wd+Pu (7.2a)
P_-p
e CTm
8 ¢ v Bg(Ws) (7.2b)

Thus, whenver &(w) > 1 , select W(s) such that |w(ju,)ls{w) <1 . The filter
W acts 1ike a "frequency switch” whose functfon fs to insure condition (vi) of
Lemma 5.1.

There are two ways to implement this compensator in an adaptive system.

The first way is to use a fixed model of the plant for Py, 1.e., P = P.
The second way is to replace Pm with an adaptive observer, i.e., Pm «f .
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In either case, to obtain the benefit of the SPR compensator, the sfgnal to be
controlled is the compensator output yc , not the plant output y. Both of
these compensators will now be examined,

Fixed SPR Compensator

Let Pm = p , a fixed model, and let the actual plant be given by (2.17),
P = (1+)P_ with a e Bs(c) . Then the fixed compensator plant equivalent
model error (7.2b) is:

Po-Pu
b, := ¢ Bs(sl) (7.3a)
where
VTjw)-P*(jm)I
61(w) i= |W(jw)lslw) + 1 - Wjw)l - UM | (7.3b)

This scheme is motivated by the fact that at low freguencies the tuned
parametric model Px is close to P; thus § is small and W « 1 . At high
frequencies § 1is large but (P - P )/P, 1is small, W~ O and so 8, is
small. Of course the compensator is limited if there is large model error at

intermediate frequencies.

Example 2

Example 1 is modified to include a fixed SPR compsnator with W(s) =
1/(s+1) and P(s) = 2/(s+l) . Simulation results with the large step command
(r=4) are shown in Figure 7.2. Comparing these to Figure 6.2, without
compensation, it 1s readily verified that the instability tendencies are
eliminated. Also, direct calculations reveal that Hev € SPRo , thus global
stability is insured.

Adaptive SPR Compensation

An adaptive SPR compensator, together with the adaptive controller, is
shown in Figure 7.3. The adaptive controller 1s described by,
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u = -8.2, » 2. = (Fou , Filyc-r)) (7.4a)

c“c c
6 (7.4b) ~
8¢ TTe2c € v G Y Yy . -
' "Cm1 (7 4 )
Fels) = (1L (s),...,s ML (s)) » n, = deg L (s) .4c
and the adaptive observer is described by, =2
y =85z, . 24 = (Fyu. Fly) (7.44)
o y (7.4d)
CR “ToZe® * € =Y Y .
' "o (7.4)
L!_ where Lo(s) and Lc(s) are both monic and stable. To generate the error e

system interconnection operators associated with this system, let e*c and

- 8, denote the tuned parameters with respective gain errors, o and g_ ; and
- *0 c o
f" let v :=¢'z and vo 1= e")zo be the corresponding adaptive control errors
(3.6). By analogy with the procedure used in Section 5 we get, K
u = Culry ) - 1 v (7.5)
* c I+A,17Lc c
. Bay Bay 3
y =-p—d+ (1 ---a)Pu+v, (7.6) .
A 0 0
o where
.
- c nggi;f- (7.7) -
51 o Mg e . -
= Buoy/L N
o Py = re * (7.8)
" * + *1 o _D:

and where (Axy, A«p) are polynomials whose coefficients are the parameters fn

Bag 3 (8,1.8*2) are polynomials whose coefficients are the parameters in

| 8sp + 3nd Nu, Ps and g are as defined by (5.6a). The adaptive error model is ;j
given below in terms of 7, , S, , and K_ as defined in (5.4). In additon,




S |

define:

D
R e 1 + (w'l)[—
0

The tuned signals are:

e,,c =

e*o

C

Su(14aRT,)7IR d + (T, (14aR)(14aRT,)71oH )r

DuL; (14aRT,) 7 Va + 0,17 Taa(1eaRT, )
E AL 1Pz K, (14aRT ) r-Rd)
C*2"¢c * "¢ *
-1
| F S+l 14aRT,) " (Rd-r) y

FoArgl o P Ka(14aRT,) 1 (roRa)

F T (1+RT,) 7 (d - (140)7)

— -l

The interconnections are:

K, (1+aR)(14aRT, )7L -(1-W)s, (14RT,) "]
H s
ev -1 -1 -1 -1
KWD,L  a(1+44RT,) 1+4(1-W)T,D,L ~*(1+aRT,)
F_Palk, (14aRT,)7] F AL P K, (1-W) (144RT, )]
cPx RalltaRl, cPral P Kall- ART
H =
lcV -1 - =1

......

.
-----
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FoPa Ka(148RT,) ! Fohaplo Palk, (1-W) (144RT,) 7

H = (7.11¢)

zov -1 -1 -
-FOK,(1+A)(1+ART*) FoTal1-W)(1+a)(144RT,) | _

The factor (1+ART1,,)°1 appears in all the terms above. The transfer
function R (7.9) reduces the effect of unmodeled dynamics; however not exactly
by the amount anticipated, vis a vis (7.2). This is due to additonal model
error introduced by the adaptive observer. Nonetheless, the model error
attenuation is greater than with the fixed SPR compensator. In particular, at
low frequencies a « 0 and at high frequencies R = 0 , since

Wa~0 and D,L;1 = 1 . Without further testing of H_ (7.11a) it is not
possible to state that Hev € SPRo at intermediate frequencies. Note,
however, that the nominal value of Hev is:

you

S

K* ’(I‘N)S*
= (7.12)
ev 0 1 .

g ot 4
.o
e

which is SPR, provided that K, ¢ SPR and

Re K, (Jo) > H1(1-W(3u))Suidu)l? , w e R (7.13)

1O MR

;l» Applying (4.11) to (7.11a), a tedious procedure, would give an upper bound on

[+ model error to insure Hev € SPR° .
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8. CONCLUSIONS

This paper has presented an input/output view of multivariable adaptive
control for uncertain linear time invariant plants. The essence of the
results are captured in Theorems 1A and 2B which provide conditions that
guarantee global stability. Corollary 1 also give specific L2 and L_ bounds
on significant signals in the adaptive control system. These bounds, for
example, can be used to guarantee that the adaptive system performs as well as
a robust (non-adaptive) system using the same structure, but with fixed
gains. By distinguishing between a tuned system and a robust system, we
establish formulae which can be used to restrict the minimum performance
improvement possible with the same control structure.

Although the stability results (Theorem 1A, 1B) are not entirely new (see
e.g., [7],[8]), the input/output setting provides the means to directly
determine the system robustness properties with respect to model error. The
type of model error examined can arise from a variety of causes, such as
unmodeled dynamics and reduced order modeling. It is very difficult to treat
this type of "unstructured" dynamic model error by using Lyapunov theory,
since the system order may not be known -- in fact, it may be infinite.
Although infinite dimensional (distributed) systems were not considered here,
Theorem 1 can be modified to include them, e.g., [26].

The structure of Theorems 1A and 1B require that a particular subsystem
operator, denoted Hev , Is strictly positive real {(SPR). This requirement is
not unique to this presentation - passivity requirements, in one form or
another, dominate proofs of global stability for practically all adaptive
control systems, including recursive fdentification algorithms.

Unfortunately, although H, e SPR is robust to model error (Lemma 4.1), the
bound on the model error is too small to be of practical use. Even the most
benign neglected dynamics violate the bound.

Although this paper 1s concerned with continuous-time systems, the
theorems carry over virtually intact to discrete-time systems. This {s a
direct consequence of the portable nature of the input/output view. However,
there 1s an important issue unique to discrete-time systems: plant

120

-

N5 LN oy e TN AR

.
AR g “ et L. - . e e N '
T A T T W L L T D . e A S ST 1

5

r‘

,
-



uncertainty is critical to where performance 1s actually measured, which {is {n

IE continuous-time, not at the sampled-data points. As a consequence, it may be
necessary to map the discrete portions of the adaptive system (most likely the
controller) into continuous-time, i.e., the Lp-gains of the discrete-time
operators in the interconnection map, which are associated with the adaptive
discrete-time controller, would be needed rather the discrete-time zz-gains .

=
Another area worth pursuing is the adaptive control of non-linear

plants. The plant uncertainty description (2.11) does not exclude non-linear
plants. Note that slowly drifting parameters in an otherwise perfectly known
LTI plant could yield the same uncertainty description as a non-linear plant
approximated by a parametric LTI model. A1l that is required is that there

, exists a (possibly) infinite dimensional LTI system which matches the

E: input/output behavior of the plant for each possible input/output pair. Of

course, if the plant is truly non-linear, then the tuned control is likely to
be non-linear, which raises some very interesting issues for further research.

One final remark: the stability results presented here, as well as other
known results, provide global stability. This is achieved by requiring
H ¢ SPR , a condition which is difficult to maintain in normal

ev
circumstances. On the other hand, this is a sufficient conditon; violation of

which does not necessarily lead to instability. The simple example presented
here in Figure 6.1-6.2, illustrates the point. Other examples of this
phenomena abound, e.q., [12]. It would appear then, that a more valid

approach to providing a system-theoretic setting for adaptive control is to
develop local stabflity conditions, which, hopefully, do not require that
Hev ¢ SPR . Preliminary results on local stability support this hope, e.g.,
(33], [34].
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APPENDIX A

PROOF OF THEOREMS 1 AND 2

Preliminaries

The main ingredient in the proof is to show stability by means of
passivity. Although there are many variations on this theme, a general result
is given by the following.

Theorem A.1 ([21], [35]

Consider the feedback system of Figure A.l below with causal operators

Gl and Gz .

Figure A.1 Feedback System

Suppose there exists real constants € s i=1,2 , such that

1. Gio
<x,G1x>t > eilXIiz + 61|61X|£2 ta;, ¥t >0, ¥xe Lz[o.t] (A.1)

for i=1,2. Then the following holds ¥ t > O,

2 2
(ea*s1ayhen + L+ yplen € 11 (1Ug0,s + 2leplerun,,)

2 2
* 1p1ep(bughep + 2leglenugrey) + deglenupngy + lepl - 1uprey

+ lag| + la,| (A.2)

.

..............



Proofs of both theorems also rely on well known results for systems
He ngm . The results required here are summarized in the following.

Theorem A-2 [see [19], Thm. 9, pg. 59]

Let H ¢ sgxm : then:

(1) If ue Lg , then y = Hu ¢ Lg L: » Ve Lg , ¥ is continuous, and

y(t) + 0 as t + = .

(i1) If ue LT » then y = Hu ¢ L: y ¥ cL", and y is uniformly
continuous.

(191) If ue L" and u(t) » constant c e R" as t o = , then
y(t) » H(O)c exponentially as t + = .

In order to simplify notation we drop the superstrict on L: which
indicates vector size.

We will establish Theorem 1A first. Some of the steps will be repeated
for 1B. Also, without loss of generality, the matrix T in the adaptatfon law

(3.15),(3.16) is set to fdentfty. Corollary 1 is established as a by-product.

Proof of Theorem 1A

Part (1)

Identify Gl’ G2 in Figure A.l with e + v and Hev respectively. Also,
let ul =e, u2 =0, e =e, yl = e2 = v, and y2 = Hevv' . Using adaptive

Taw (3.15) we obtain,

1

<e,vy = <e,l'9>; = <Ze,0>; = <, 87 (A.4)
= z1e(h? - 3 relon? (A.5)
> = 7 100007 (A.6)
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E. Thus, using (A.1) gives,
F € = 61 =0, ey E - % le(o)lz (A.7)

& Since Gz = Hev € SPR+ by assumption, 3Ju, y > 0 such that ¥ xe L

<KHg X>1 > uixigp, BHo Xie, € YiXig, - Hence, from (A.1),

2e’

€2=U| 62=02=0 (Aoa)

Using Lemma A.1, together with (A.4)-(A.8) gives,

1 2 2.1/2
Vi, < E[n,ln + (le,.,lT2 + 2ul8(0) %) / ] (A.9)
e-edq, < YIVig, (A.10)
lo(T)1Z < 160112 + 21e1,, tvi (A.11)
12 Wit2 .

The bounds shown in (4.8) follow using the assumption e, ¢ L2 . Hence,
e,ve L2 and ¢ ¢ Lg .

) Having Sstabh‘shed that v ¢ L2 , Theorem A-2 == z:= z-2, ¢ LZHL_, ; € LZ'
2+ 0, and z is continuous. Since z,, z, ¢ L by assumption, it follows

that z ¢ L. and % ¢ L_(=) z is uniformly con:.inuous). Using v = 2'g with
z,68'el =>vel . Using e-= e*-Hevv with e, ¢ L_ and Hev e S (by
assumption), and v ¢ L.% ec L' . Hence, 8§ = Ze ¢ L = o is uniformly
continuous =» v = Z'9 is uniformly continuous (since z 1s)=d v » 0 since

Ve l.2 is established. Using v + 0= ¢ -.e* + 0, and since e, + 0 by
assumption, e » 0 . Furthermore, v » O=p 2z » 0 exp. and

g =le = Ze + Z,e + 0 , because zande+ 0. Using v = i'e +7'6 with
2,0,0c¢ L_-b v ;“L_ . Hence, e° =8¢, - Hev Ve L. » because e, ¢ L_ by
assumption. Thus, g = 2e + Ze ¢ L_ - This establishes properties (1-a)-

(i-d).

To show (1-e) consider (3.15) written as:

sl R
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°0=-2 H, 2, 0tw
(A.12)

Wit ~(ZaHgT' + 2 Hy, 24+ T H,, T')e

Since we have already established that z . 0 exp. and ¢ ¢ L_ .+ it follows o
that w + 0 exp. Since 2z e PE by assumption (provided e, = 0) , w o0 fs exp. N
stable by (2.15). Hence, o — O exp.=» §, v+ 0 exp.=» e-e, + O exp. This 3
completes the proof of part (i) with adaptive law (3.15). N

-
.
i

To show that (i-a)-(i-a) hold with adaptive law (3.16) requires showing 1
that Glze -> v is passive. Consider the typical time interval,
‘ I = {te [ty,t))] nelth <}
1= (A.13)

112 = {te [t,t,)] 18(th > ¢ > maxio,i} -
Hence, : f
<e,v> = <e,v>_ + <g,v> (A.14) ¥
I 19 I - T
Thus, :‘j' j
. ]
<e.V>,l = <9, e>Il = %— m(tl)n2 - % l9(t°)|2 (A.15) -
e, = &+ (1 - 180/c)? 8, 8> (A.16) .
2 2 )
= retton? - Fasteyn? + (1 - yar/er i, o1, (A.17)
> %’le(tz)lz -%‘le(tl)lz (A.18)

because <3, 8>; » 0 from,
2




Aot B e gl i ad

o,
AAy

-

al(t)' o(t) = alt)'[alt)-0,]
- wolth? - a(t)'e,
> I;(t)lz - Ig(t)lc
= re(th(ral(t)i- ) > 0, Vtel, . (A.19)
Thus,
<e.v>y > 3 roltyh? - 3 sl h? (A.20)

Repeating the above procedure recursively,we eventually conclude that
<e,v>; > - %— |e(0)|2 as before (A.6), and hence, Gie »v is passive. The
results in (i) now repeat for adaptive law (3.16). This completes the proof

of part(i).

Proof of Theorem 1A Part (ii)

Theorem 1A, Part (ii) is essentially an L -stability result. The method
of proof requires the notion of "exponential we?ghting" which is a means to
obtain L.-stabiIity of a system from the Lz-stability of an exponentially
weighted version of the system (see e.g., [19], Chapter 9). We require the
following:

Definition: Given a real number o define the exponential weighting operator

by
O(t) = otx(t) (A.21)

Consider the system y = Gu. An exp. weighted version of this system {s
denoted by y® := ¢® u® . Note that i{f G is a convolution operator with
transfer function G(s) then G* 1s also a convolution operator with transfer
function G(s-a) . Thus, the corresponding exponentialy weighted error system
corresponding is described by
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e €, ev

N
]

va = Zlea

8% = a8® + Ze® - 5(8)e®
where a > 0 such that

a m a kxm
Hev € SF‘R+ and sz € SO (A.23)

Using Theorem A-1, identify G1 with e® + v® and (;2 with H‘;v. Note that it f{s
always possible to find some o > 0 such that (A.23) holds. We now examine

the passivity of G,: e® + v® . Thus,
@ B _ .8 108y . a _.a

<e,v>T-<e,Ze>T <Ze.e>T

%, 8% - a8® + pl8)e™>g

T 2 1 2 a0 2
e T1s (T2 3 100011° + <166, 6%p-a1e™iy,

> 2T - Fuson? - aie®, (A.28)

The last line follows from (A.19), hence, (A.24) holds with or without the
retardation term in the adaptive law. At this point there are two
possibilities: either 8 e L_ or lo(t)] » was t + » . If g ¢ L, then 3
constant co < » such that e < co . Then,

<e?, v, ’}cz"T(la(T)uz cg - % 1e(o)e?
> - %eZ“Tcﬁ - % 10 (0012 (A.25)

If |o(t)] + » a5 t + = then it 1s always possible to select an arbitrarily
large T such that 18(Ths= 190, - Hence, for this T, (A.24) becomes,

<e?, v > %-cz“T(le(T)lz - |e|$_) - % 10(0)42 (n.26)

s - %— |e(0)|2
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-a

Thus,for some arbitrarily large T, (A.25) and (A.26) have the general form,

i.e.,
a a ZGT .
<%, vI>. > -¢, € - ¢, := =-c{al) (A.27)
T 1 2
where cl, c2 are non-negative constants. Hence,

€y = 8;» = 0.0y = -c(aT) (A.28)

Since G, = HX ¢ SPR,, 3 constants u, y > 0 such that

2
X, Hey X7 > winiyy

'H:v Xipp € Y IXip (A.29)
Then,
C2 ‘u’ 62=02=0 (A.30)
Using (A.2), we get
v, <-§;{|e2|T2 + (162, + 2 claT)1/?) (A.31)
Since e, ¢ L_ by assumption,
1€, < c“T(Za)'llzle*l_ (A.32)
Thus,
al -1/2 -
lv“uTz ¢ &2 (2) [1ea  + [le*lf + 4q ¢ 2"Tuc(mT))uz] (A.33)
kxm
Since ":v €Sy . we obtain
- T
lz()| = | [ Hay(Tedvinden (A.34)
-al T a
= le { K3y (T=1)v? (x)6r] (A.35)
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~aT a
< e |H°z'v(-)|l - vy, (A.36)

where H;v(t) is the impulse response matrix associated with H;v .
Substituting (A.33) and (A.27) into (A.36) and noting that

e'2°Tc(uT) <€ty ,we obtain,
. -1/2
2(T)] < 2)7 ° |H°z‘v(.)|1 o [rear + ('e*'i + 4au(c1+c2))1/2] (A.37)

Since the right hand side is independent of T, and since T can be selected to

be arbitrarily large, it follows that 2z ¢ L, . Assuming there is no
retardation or persistent excitation, this completes the proof of (ii-a) to

(1i-d).

Assume now that z ¢ PE , which is a noncontradictory assumption since we
have already shown that z ¢ L“ . Hence,

8=-IH, 2 o+l (A.38)
Since ze PE, H e SPR_and z, e, e L_, it follows from (2.15) that
(Ze,, 8(0)) o is exp. stable, thus, 9, & ¢ L, . The remaining results in

(ii-e) follow immediately.

Suppose now that the adaptive law is given by (3.16). Then, we can
write,

0 =Ze-p(8)5 = Z[e,-Hy 2" (6-0,)] - 0(6)6
- a o (A.39)
= w17 HevZ' o - plo)e

where w :=Ze, +ZH Z'0, el ,because z, e, el . Consider the
candidate Lyapunov function v;n-..é(tnz .~ Hence,

V=2we-6'ZH,2'% -plel (A.40)

Suppose 3o(t)s » w as t + » . Then there exists a time T > 0 such that
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|5(T)l = -5.,_ = V%/2> ¢ . Hence,
2
VT < Zawn_ V%/2+ Nz Y-("ev)vT - {1 - V%/Z/c)zvT (A.41)

Clearly, the:e exists a finite constant cl such that when. vT > cl. vT <0.
Therefore, g can not grow beyond all bounds, and hence, ¢ ¢ L, - So then f{s
e and § , and again the result of (ii-e) follow. This completes the proof of
Theorem 1A. Note that in this case we do not obtain specific bounds on e,

because the proof proceeds by contradition.

Proof of Theorem 1B

Part (i)

> =
Since Hev ¢ SPR_, there exists q > 0 such that Gev = (1 + qs)Hev e SPR,

0
and furthermore, th e S . As a result we can write (3.14a) as,
= < -1 .
e = -Hev Y, y=v- Gev(e* +q e,) (A.42)

Referring to Lemma A-1, let Gl : Ve, Gz = Hev . u1 =0, and

u, = -ng(e* + qe,) . Using (A.2) together with (A.42) and the passivity
properties of Hev gives,

tetg, < iy, + (tupdy + 2ule(0)1%)/2) (A.43)
le(T) < lo(0)] + 21e1y, « wuptqy (A.44)

where , is defined in (4.9a). Using (4.9b) gives,

Vuptgp < (1/K)1e, + Qeuiyy - This together with (A.43), (A.44) and the
assumption e,, e, ¢ L2 gives the bounds shown in (4.9). Hence,

eecl,,0¢ L. . However, we can not conclude that v ¢ L2 as in Theorem 1A,
part (1). From (A.42), we can conclude that (1 + qs)'1 vel, . Since

Ezv 1= (1 4+ qs)sz € SOg. it folIoYs from Lemma A-2 that
2= 2.2, ¢ L, NL_ s+ zel,andz+0 . Repeated use of Lemma A-2 and the
error equations (3.14) gives the results (i-a) - ({-d). (1-e) follows from

the arguments in the proof of Theorem 1A, part (1).
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Part (11)

The proof is entirely analgous to that of Theorem 1A, part (i1), where -
again we use exponential weighting.
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APPENDIX B

PROOF OF LEMMA 5.1
The proof utilizes the following known results:

Definition: Let J denote a subset of S, consisting of functions in S whose
inverse is also in S.

Fact [29]: If G is any scalar transfer function in R(s), then G has a coprime

factorization in S, 1.e., there exists N, D, A, and B in S such that
G = N/D and AN + BD = 1.,

Lemma B-1: Consider the tuned adaptive system of Figure 5.2. Let

P, & Ro(s) and Cy ¢ Ro(s) have coprime factorizations in S given by
P, = Np/Dp and ¢, = No/D¢ » respectively. Then, the elements of the
transfer matrix from (r,d) into (e,, z,,y, u) all belong to S, if:

(i) Q := DpDc +NNed, (from [29]) (8.1)
and
(1) 8(w)|To(du)l <1, ¥we R, (from [16])
where
T, = NNAQ := PLC,(14p,C,) "] (8.2)

Using the definition of Q we can write Hev and sz from (5.5) as,
Hoy = N Q" 1(14a)(14aT,)"? (8.3)
ev P *

FDDO'1(1+AT.)°1

H = (B.4)
v FNPO'I(1+A)(1+AT,)'1

S e e e " 2 e B "B e PRl

3 IR

-

4
5
”
-
s



X

bl a had ol Sl 0 MBS D Rl A an D & Aehe "Rl Yl Tl W Sah Sl ML il Al et Sl et et Gl AREIEA Sl g RO S Sl Sl S A A AN i 06 S A A ir AU AV Sl ab A anac TR ETTTI TS

LAy
Es

TR P S0

From the definition of K, (5.4b), we also obtain

4
Q= NK:! (8.3) '
P
Proof of Lemma 5.1 -3
We first show that (i), (i), and (iv) => Qe J . Let P, =N/D be a )
coprime factorization of P+ such that rel deg Dp(s) = 0. Since () => rel deg :
Px(s) = 1, it follows that rel deg Np(s) = 1. Moreover, (iv) =>
rel deg K.(s) = 1, and that Kj(s) and Kp(s) are stable. This, together with
(i) and (B.3) establishes that Q¢ J .
O H,, €S, follows immediately by inspection of (B.2), since: F c S_ by -
o assumption; D , Np €S; QedJd:;aecSDby assumption (vi); and finally (vi)
&_f => (i1) of Lemma B-1 = (14aT,) 1 e s .

' Conditions (iv) and (vi) = H_ ¢ SPR_. This follows from Lemma 4.1 -
by letting W, = K, and letting 1 + oy = (1+a)(1+aT,)"1 . Thus, (4.4a) is =
satisfied since K, e SPR_from (iv). Also, from (4.4b), )

° 3
k(o) = 1Ry, (Ju)l = |A(jw)S*(Jm)[l-A(Ju)T*(jw)]-ll (8.4) |
7 =
o
Al §(w)1Se(Ju)l
Sf < TSETSTIT < Klw) = nlw) (8.5)
i‘l.J w) TeQJw
r7 The last inequality comes from conditions (vi) and the definition of =
. K(w) from (4.4b). A
" -
9‘ The final step in the proof of Lemma 5.1 {1s to show that there are a o
f? sufficient number of parameters in o, to fnsure a solution exists. This {s
o guaranteed by satisfaction of condition (v). To see this combine (B.3) with
EE the definition of Q from (B.1) to get
ﬁ! . -1 4
8 Q = NN 4D D = N K] (8.6) |
5 ..
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be a coprime factorization of

From (5.2), let Nc = A*ZIL and Dc =] + A -
C*, and let Np = g N+/L and D, = 1 + Ds/L be a coprime factorization of Ps. v

"I

!l where P, {s as defined in (1). With K« given by (iv), (B.6) becomes the
polynomial equation,

Auy K 04 * ALK N, = LIKN K D,) (8.7)
Since deg(KzN*) = deg(KID*) and K, , K,, N,, and D, are all monic, 1t follows ?
that deg[L(KZN*-KID*] = deg(L) + deg(Kl) + deg(D,) - 1 . Then, using known
results on polynomial equations, e.g. [30], it can be shown that (v) implies
that (B.7) has a solution (A4, Asp) -

Yot
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